DP

chứng tỏ rằng 1/4+1/16+1/36+1/64+...+1/10000<1/2

HV
8 tháng 2 2020 lúc 12:18

Đặt    \(A=\frac{1}{4}+\frac{1}{16}+\frac{1}{36}+...+\frac{1}{10000}\)

\(A=\frac{1}{4}+\frac{1}{4}\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\right)=\frac{1}{4}+\frac{1}{4}\cdot B\)

Ta có     \(\frac{1}{2^2}< \frac{1}{1\cdot2}=1-\frac{1}{2}\)

\(\frac{1}{3^2}< \frac{1}{2\cdot3}=\frac{1}{2}-\frac{1}{3}\)

\(...\)

\(\frac{1}{50^2}< \frac{1}{49\cdot50}=\frac{1}{49}-\frac{1}{50}\)

\(\Rightarrow B< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}=1-\frac{1}{50}< 1\)

\(\Rightarrow A< \frac{1}{4}+\frac{1}{4}\cdot1=\frac{1}{2}\)

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
TC
Xem chi tiết
DB
Xem chi tiết
LY
Xem chi tiết
CP
Xem chi tiết
NK
Xem chi tiết
NT
Xem chi tiết
TX
Xem chi tiết
BA
Xem chi tiết
NA
Xem chi tiết