Chứng tỏ rằng:
1.3.5...99=\(\frac{51}{2}.\frac{52}{2}...\frac{100}{2}\)
Chứng minh rằng:\(\frac{51}{2}+\frac{52}{2}+...+\frac{100}{2}=1.3.5...99\)
Chứng minh rằng :
\(\frac{51}{2}\). \(\frac{52}{2}\). .... .\(\frac{100}{2}\)= 1.3.5. ... .99
Chứng tỏ rằng:
1.3.5. ... .99=\(\frac{51}{2}\).\(\frac{52}{2}\).\(\frac{53}{2}\). ... .\(\frac{100}{2}\)
CM : \(1.3.5.....99=\frac{51}{2}.\frac{52}{2}.....\frac{100}{2}\)
So sánh: 1.3.5....99 với \(\frac{51}{2}.\frac{52}{2}.\frac{53}{2}....\frac{100}{2}\)
Chứng minh rằng :
\(\frac{51}{2}.\frac{52}{2}.....\frac{100}{2}=1.3.5....99\)
Chứng tỏ rằng: \(\frac{1}{1}\times\frac{1}{3}\times\frac{1}{5}\times.....\times\frac{1}{99}=\frac{2}{51}\times\frac{2}{52}\times\frac{2}{53}\times.....\times\frac{2}{100}\)
Bài Toán :
CMR : \(\frac{51}{2}.\frac{52}{2}.\frac{53}{2}.....\frac{100}{2}=1.3.5.....99\)