LA

Chứng tỏ rằng 1+1/2+1/3+1/4+...+1/62+1/63+1/64>4

LA
20 tháng 7 2016 lúc 19:10

Ta có: A = 1/2+1/3+1/4+...+1/62+1/63+1/64

A = 1+(1/2+1/3+1/4)+(1/5+1/6+1/7+1/8)+(1/9+1/10+...+1/16)+...+(1/17+1/18+....+1/32)+(1/33+1/34+...+1/64)

Ta có: 1/2+1/3+1/4>1/2+1/4+1/4=1

1/5+1/6+1/7+1/8>1/8+1/8+1/8+1/8=1/8.4=1/2

1/9 +1/10+...+1/16>1/16+1/16+...1/16=1/16.8=1/2

1/33+1/34+...+1/64>1/64+1/64+...+1/64=1/64.32=1/2

Vậy A > 4

Bình luận (0)
LA
17 tháng 7 2016 lúc 19:56

Xin ai giải hộ cái

Bình luận (0)
NP
6 tháng 7 2017 lúc 9:36

Ta có A = 1 + 1/2 + 1/3 + 1/4 + 1/5 + ... + 1/64

          A = 1 + (1/2 + 1/3 + 1/4) + (1/5 + 1/6 + ... + 1/8) + (1/9 + 1/10 + 1/11 + ... + 1/16) + (1/17 + 1/18 + 1/19 + ... + 1/32) + (1/33 + 1/34 + 1/35 + ... + 1/64)

=> A > 1 +  (1/2 + 1/4.2) + 1/8.4 + 1/16.8 + 1/32.16 + 1/64.32

     A > 1 + 1 + 1/2 + 1/2 + 1/2 + 1/2

    A > 4 (DPCM).

Bình luận (0)

Các câu hỏi tương tự
HH
Xem chi tiết
NK
Xem chi tiết
HL
Xem chi tiết
LH
Xem chi tiết
YP
Xem chi tiết
VN
Xem chi tiết
NH
Xem chi tiết
VH
Xem chi tiết
BD
Xem chi tiết