AG

chứng tỏ phân số\(\frac{3n+2}{2n+1}\)tối giản với mọi số tự nhiên n.

AG
23 tháng 4 2019 lúc 20:00

gọi d=ƯCLN(3n+2;2n+1)

lập luận d = 1

kết luận\(\frac{3n+1}{2n+1}\)tối giản

Bình luận (0)
LC
23 tháng 4 2019 lúc 20:01

Gọi \(\left(3n+2;2n+1\right)=d\)

\(\Rightarrow\hept{\begin{cases}3n+2⋮d\\2n+1⋮d\end{cases}\Rightarrow\hept{\begin{cases}6n+4⋮d\\6n+3⋮d\end{cases}}}\)

\(\Rightarrow\left(6n+4\right)-\left(6n+3\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d\inƯ\left(1\right)=\left\{\pm1\right\}\)

\(\Rightarrow\frac{3n+2}{2n+1}\)là phân số tối giản với mọi STN n

Bình luận (0)
HS
23 tháng 4 2019 lúc 20:02

Gọi d là ƯCLN\((3n+2,2n+1)\)  \((d\inℕ^∗)\)

Ta có : \((3n+2)⋮d,(2n+1)⋮d\)

\(\Rightarrow\left[2(3n+2)\right]⋮d,\left[3(2n+1)\right]⋮d\)

\(\Rightarrow\left[6n+4\right]⋮d.\left[6n+3\right]⋮d\)

\(\Rightarrow\left[6n+4\right]-\left[6n+3\right]⋮d\)

\(\Rightarrow1⋮d\Leftrightarrow d\in\left\{1;-1\right\}\)

Mà \(d\inℕ^∗\)nên d = 1

Vậy : \(\frac{3n+2}{2n+1}\)là phân số tối giản \(\forall n\inℕ\)

Bình luận (0)

Các câu hỏi tương tự
BM
Xem chi tiết
PB
Xem chi tiết
PN
Xem chi tiết
TN
Xem chi tiết
TU
Xem chi tiết
NT
Xem chi tiết
PB
Xem chi tiết
H24
Xem chi tiết
NM
Xem chi tiết