PB

Chứng tỏ A   =   ( x   +   1 ) ( x   + 2 ) ( x   +   3 ) ( x   +   4 )   –   24 chia hết cho x (với x ≠ 0)

CT
21 tháng 7 2017 lúc 3:23

Ta có A = (x + 1)(x + 2)(x + 3)(x + 4) – 24

= (x + 1)(x + 4)(x + 2)(x + 3) - 24

= (x2 + 5x + 4)(x2 + 5x + 6) - 24(*)

Đặt x2 + 5x + 5 = t

Thay x2 + 5x + 5 = t vào (*) ta được:

A = (t - 1)(t + 1) - 24

= t2 - 25

= (t + 5)(t - 5)

= (x2 + 5x + 5 + 5)(x2 + 5x + 5 - 5)

= (x2 + 5x + 10)(x2 + 5x)

= (x2 + 5x + 10).x(x + 5) chia hết cho x (Với x ≠ 0)

Vậy: A chia hết cho x (Với x ≠ 0)

Bình luận (0)

Các câu hỏi tương tự
ML
Xem chi tiết
PB
Xem chi tiết
TH
Xem chi tiết
VU
Xem chi tiết
H24
Xem chi tiết
NL
Xem chi tiết
NM
Xem chi tiết
H24
Xem chi tiết
NN
Xem chi tiết