H24

Chứng tỏ A = 10n+18n-1 chia hết cho 27(với n là số tự nhiên)

QW
6 tháng 4 2016 lúc 13:06

 Câu trả lời hay nhất:  Ta có: 10^n + 18n - 1 = (10^n - 1) + 18n = 99...9 + 18n (số 99...9 có n chữ số 9) 
= 9(11...1 + 2n) (số 11...1 có n chữ số 1) = 9.A 
Xét biểu thức trong ngoặc A = 11...1 + 2n = 11...1 - n + 3n (số 11...1 có n chữ số 1). 
Ta đã biết một số tự nhiên và tổng các chữ số của nó sẽ có cùng số dư trong phép chia cho 3. Số 11...1 (n chữ số 1) có tổng các chữ số là 1 + 1 + ... + 1 = n (vì có n chữ số 1). 
=> 11...1 (n chữ số 1) và n có cùng số dư trong phép chia cho 3 => 11...1 (n chữ số 1) - n chia hết cho 3 => A chia hết cho 3 => 9.A chia hết cho 27 hay 10^n + 18n - 1 chia hết cho 27 (đpcm)

Bình luận (0)

Các câu hỏi tương tự
TD
Xem chi tiết
DH
Xem chi tiết
NA
Xem chi tiết
NN
Xem chi tiết
MA
Xem chi tiết
H24
Xem chi tiết
H6
Xem chi tiết
TT
Xem chi tiết
NN
Xem chi tiết