NA

Chứng minh

x^3+y^3+z^3-3xyz=1/2(x+y+z)[(x-y)^2+(y-z)^2+(z-x)^2]

TD
21 tháng 9 2016 lúc 21:37

x^3+y^3+z^3-3xyz=1/2(x+y+z)[(x-y)^2+(y-z)^2+(z-x)^2]

2 cái bằng nhau

Bình luận (0)
NA
21 tháng 9 2016 lúc 21:45

Chứng minh hộ tui phát

Bình luận (0)
AN
21 tháng 9 2016 lúc 23:06

Ta có (a + b + c)=  a3 + b3 + c3 + 3a2b + 3a2c + 3b2a + 3b2c + 3c2a + 3c2b + 6abc

=> VT = (a + b + c)- (3a2b + 3a2c + 3b2a + 3b2c + 3c2a + 3c2b + 9abc)

= (a + b + c)- (3a2b + 3b2a + abc) - (3a2c + 3c2a + 3abc) - (3b2c + 3c2b + 3abc)

= (a + b + c)[a2 + b2 + c2 + 2(ab + ac + bc) - 3(ab + bc + ac)]

= (a + b + c)(a2 + b2 + c2 - ab - bc - ac)

VP = \(\frac{1}{2}\)(x+y+z)[(x-y)^2+(y-z)^2+(z-x)^2]

\(\frac{1}{2}\)(x+y+z)(2x+ 2b2 + 2c2 - 2ab - 2bc - 2ac)

= (x+y+z)(x+ b2 + c2 - ab - bc - ac)

Từ đó => VT=VP

Bình luận (0)

Các câu hỏi tương tự
LD
Xem chi tiết
TA
Xem chi tiết
PC
Xem chi tiết
TH
Xem chi tiết
DA
Xem chi tiết
KL
Xem chi tiết
HP
Xem chi tiết
VM
Xem chi tiết
ND
Xem chi tiết