\(\sqrt{\sqrt{5}-\sqrt{8-\sqrt{81-8\sqrt{5}}}}=\sqrt{\sqrt{5}-\sqrt{8-\left(4\sqrt{5}-1\right)}}\)\(=\sqrt{\sqrt{5}-\sqrt{9-4\sqrt{5}}}=\sqrt{\sqrt{5}-\left(\sqrt{5}-2\right)}=\sqrt{2}\)
\(\sqrt{\sqrt{5}-\sqrt{8-\sqrt{81-8\sqrt{5}}}}=\sqrt{\sqrt{5}-\sqrt{8-\left(4\sqrt{5}-1\right)}}\)\(=\sqrt{\sqrt{5}-\sqrt{9-4\sqrt{5}}}=\sqrt{\sqrt{5}-\left(\sqrt{5}-2\right)}=\sqrt{2}\)
Chứng minh :
\(A=\sqrt{8+2\sqrt{10+2\sqrt{5}}}+\sqrt{8-2\sqrt{10+2\sqrt{5}}}=\sqrt{2}+\sqrt{10}\)
Chứng minh rằng
\(A=\sqrt{8+2\sqrt{10+2\sqrt{5}}}+\sqrt{8-2\sqrt{10+2\sqrt{5}}}=\sqrt{2}+\sqrt{10}\)
Chứng minh \(\sqrt{8+2\sqrt{10+2\sqrt{5}}}+\sqrt{8-2\sqrt{10+2\sqrt{5}}}=\sqrt{2}+\sqrt{10}\)
Chứng minh đẳng thức
\(\left(4-\sqrt{7}\right)^2=23-8\sqrt{7}\)
\(\sqrt{9-4\sqrt{5}}-\sqrt{5}=-2\)
\(\dfrac{\sqrt{4-2\sqrt{3}}}{1+\sqrt{2}}:\dfrac{\sqrt{2}-1}{\sqrt{3}+1}=2\)
\(\left(\dfrac{2\sqrt{3}-\sqrt{6}}{\sqrt{8}-2}-\dfrac{\sqrt{216}}{3}\right).\dfrac{1}{\sqrt{6}}=-1,5\)
Chứng minh đẳng thức
\(\left(4-\sqrt{7}\right)^2=23-8\sqrt{7}\)
\(\sqrt{9-4\sqrt{5}}-\sqrt{5}=-2\)
\(\dfrac{\sqrt{4-2\sqrt{3}}}{1+\sqrt{2}}:\dfrac{\sqrt{2}-1}{\sqrt{3}-1}=2\)
\(\left(\dfrac{2\sqrt{3}-\sqrt{6}}{\sqrt{8}-2}-\dfrac{\sqrt{216}}{3}\right).\dfrac{1}{\sqrt{6}}=-1,5\)
B 2. Thực hiện phép tính
a)\(\dfrac{\sqrt[3]{384}}{\sqrt[3]{3}}\)+\(3\sqrt[3]{-54}\)+\(\sqrt[3]{432}\) b)\(2\sqrt[3]{24}-5\sqrt[3]{81}+4\sqrt[3]{192}\)
c)\(\sqrt[3]{-343}.\sqrt[3]{3}+\sqrt[3]{81}-2\sqrt[3]{-24}\) d)\(8\sqrt[3]{5}-5\sqrt[3]{40}+10\sqrt[3]{\dfrac{1}{125}}\)
cho x=\(\left(\dfrac{\sqrt[3]{8-3\sqrt{5}}+\sqrt[3]{64-12\sqrt{20}}}{\sqrt[3]{57}}\right)\sqrt[3]{8+3\sqrt{5}}\);y=\(\left(\dfrac{\sqrt[3]{9}-\sqrt{2}}{\sqrt[3]{3}+\sqrt[4]{2}}+\dfrac{\sqrt{2}-9\sqrt[3]{9}}{\sqrt[4]{2}-\sqrt[3]{81}}\right)\)
a rút gọn x và y
b tính T = xy
chứng minh
\(\left(3+\sqrt{5}\right)\left(\sqrt{10}-\sqrt{2}\right)\sqrt{3-\sqrt{5}}=8\)
Chứng minh rằng:
a)\(\left(\sqrt[3]{3+2\sqrt{2}}+\sqrt[3]{3-2\sqrt{2}}\right)^8>3^6\)
b) \(\sqrt[3]{\sqrt[5]{\frac{32}{5}}-\sqrt[5]{\frac{27}{5}}}=\sqrt[5]{\frac{1}{25}}+\sqrt[5]{\frac{3}{25}}-\sqrt[5]{\frac{9}{25}}\)