\(S=\sqrt{1+2010^2+\frac{2010^2}{2011^2}}+\frac{2010}{2011}+\sqrt{1+2011^2+\frac{2011^2}{2012^2}}+\frac{2011}{2012}+\sqrt{1+2012^2+\frac{2012^2}{2013^2}}+\frac{2012}{2013}\)
chứng minh A= \(\frac{1}{2}+\frac{1}{3\sqrt{2}}+\frac{1}{4\sqrt{3}}+...+\frac{1}{2012\sqrt{2011}}\)<2
Cho \(\sqrt{x+2011}+\sqrt{y+2012}+\sqrt{z+2013}\)\(=\sqrt{y+2011}+\sqrt{z+2012}+\sqrt{x+2013}\)\(=\sqrt{z+2011}+\sqrt{x+2012}+\sqrt{y+2013}\)
Chứng minh: \(x=y=z.\)
\(\frac{1}{2+\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+\frac{1}{4\sqrt{3}+3\sqrt{4}}+\frac{1}{5\sqrt{4}+4\sqrt{5}}+.....+\frac{1}{2012\sqrt{2011}+2011\sqrt{2012}}\)
rút gọn giúp mình với
So sánh
\(\sqrt{2012}+\sqrt{2013}+\sqrt{2014}v\text{à}\sqrt{2009}+\sqrt{2011}+\sqrt{2019}\)
Chứng minh: \(\frac{1}{2\cdot\sqrt{1}}+\frac{1}{3\cdot\sqrt{2}}+\frac{1}{4\cdot\sqrt{3}}+...+\frac{1}{2012\cdot\sqrt{2011}}+\frac{1}{2013\cdot\sqrt{2012}}\)\(< 2\)
Chứng minh: A=\(\frac{1}{3\cdot\left(\sqrt{1}+\sqrt{2}\right)}+\frac{1}{5\cdot\left(\sqrt{2}+\sqrt{3}\right)}+...+\frac{1}{97\cdot\left(\sqrt{48}+\sqrt{49}\right)}\)\(< \frac{1}{2}\)
Các số thực x, y, z thỏa mãn:
\(\hept{\begin{cases}\sqrt{x+2011}+\sqrt{y+2012}+\sqrt{z+2013}=\sqrt{y+2011}+\sqrt{z+2012}+\sqrt{x+2013}\\\sqrt{y+2011}+\sqrt{z+2012}+\sqrt{x+2013}=\sqrt{z+2011}+\sqrt{x+2012}+\sqrt{y+2013}\end{cases}}\)
CMR: \(x=y=z\)
Cho \(x,y,z\) thỏa mãn
\(\hept{\begin{cases}\sqrt{x+2011}+\sqrt{y+2012}+\sqrt{z+2013}=\sqrt{y+2011}+\sqrt{z+2012}+\sqrt{x+2013}\\\sqrt{y+2011}+\sqrt{z+2012}+\sqrt{x+2013}=\sqrt{z+2011}+\sqrt{x+2012}+\sqrt{y+2013}\end{cases}}\)
CMR: \(x=y=z\)
Tính \(\sqrt[2013]{2012\sqrt[2012]{2011\sqrt[2011]{2010.....\sqrt[1994]{1993\sqrt[1993]{1992}}}}}\)