chứng minh rằng
1. (10^10 +10^16+ 10^17)chia hết cho 555
2.(84^7- 27^9 -9^13) chia hết cho 15
3. (5^7-5^6+5^5)chia hết cho 21
4. (7^6+7^5-7^4) chia hết cho 77
5.(4^13+ 32^5-8^8) chia hết cho 5
6.(2006^1000 +2006^999) chia hết cho 2007
7.(43^43 -17^17) chia hết cho 10
8. (7^1000- 3^1000) chia hết cho 10
9( 3^2016 +3^ 2015 - 3^2014)chia hết cho 11
10.(36^36 -9^10)chia hết cho 45
chứng minh rằng :
a) 7^6+7^5- 7^4 chia hết cho 11
b) 10^9 + 10^8 + 10^7 chia hết cho 22^2
c) 81^7 - 27^9 - 9^13 chia hết cho 45
d) 24^54 .54^24 . 2^10 chia hết cho 72^63
cho A= 2+2^2+2^3+.......+2^60
CTR: A chia hết cho 3 , A chia hết cho 7 , A chia hết cho 5
chứng minh rằng :
a) 7^6+7^5- 7^4 chia hết cho 11
b) 10^9 + 10^8 + 10^7 chia hết cho 22^2
c) 81^7 - 27^9 - 9^13 chia hết cho 45
d) 24^54 .54^24 . 2^10 chia hết cho 72^63
cho A= 2+2^2+2^3+.......+2^60
CTR: A chia hết cho 3 , A chia hết cho 7 , A chia hết cho 5
Bài 1. Chứng minh
a, 10^ 2020 + 10^ 2021 + 10^ 2022 chia hết cho 222
b, 81^ 7 – 27^ 9 – 9^ 13 chia hết cho 45
c, 10^ 6 – 5 ^7 chia hết cho 59
d, 24^ 54 .54^ 24 .2^ 10 chia hết cho 72 ^63
e,3^ n+2 – 2^ n+2 + 3^ n – 2 ^n chia hết cho 10;
f, 3^ n+3 + 3^ n+1 + 2^ n+3 + 2^ n+2 chia hết cho 6
Bài 2.
a, Cho A = 1 + 2 + 2 ^2 + 2 ^3 + ...+ 2^ 99 . Chứng tỏ A chia hết cho 3; A chia 7 dư 1.
b, Cho B = 2 + 2^ 2 + 2^ 3 + ...+ 2^ 99 + 2^ 100 . Hỏi A có chia hết cho 6 không?
Bài 3. Cho A = 9^ 7 + 3^ 13 + 2. Hỏi A có chia hết cho 10 không?
chứng minh
(76+75-74) chia hết cho 55
(817-279-913) chia hết cho 405
(315-96) chia hết cho 13
(3n+2-2n+2+3n-2n) chia hết cho 10
1)a/Chứng minh:\(A=\left(8.3^3\right).49.7^{13}\) chia hết cho 42
b/Chứng minh:\(32^8-8^{13}+4^9\)chia hết cho 72
c/Chứng minh:\(3^{21}-9^9\)chia hết cho 13
d/Chứng minh:\(\left(5^{2018}+5^{2017}+5^{2016}\right)\)chia hết cho 31
2)a/\(\frac{6^5.3^2}{4^3.9^3}\)
b/\(\frac{6^8.9^2}{4^3.81^3}\)
c/\(\frac{9^8.8^6}{16^4.3^{17}}\)
1.a,chứng minh 12^4.54^2=36^5
b,10^6-5^7 chia hết cho 59
c,cho S=1+3^1+3^2+3^3…+3^99 chứng minh S chia hết cho 4, S chia hết cho 40
2. Tính: 10^4.27^3/6^4.15^4
Cho C=\(1+3+3^2+3^3+.......+3^{11}\)
Chứng minh rằng: C chia hết cho 13 và C chia hết cho 40
Chứng minh rằng:
a) 7^6 - 7^5 + 7^9 chia hết cho 11
b) 10^9 + 10^8 +10^7 chia hết cho 22
c) 81^7 - 27^9 - 9^13 chia hết cho 45
d) 3^n+2 - 2^n+2 + 3^n - 2^n chia hết cho 45