Chứng minh \(\forall n\in Z\)
\(A\left(n\right)=n\left(n^3+1\right)\left(n^2+4\right)⋮5\)
Chứng minh:
\(a^n+b^n+c^n\ge\left(\frac{a+2b}{3}\right)^n+\left(\frac{b+2c}{3}\right)^n+\left(\frac{c+2a}{3}\right)^n,\forall a,b,c>0;n\in N\)
Chứng minh: \(n\left(n+2\right)\left(25n^2-1\right)⋮24\forall n\in N.\)
Chứng minh: \(n\left(n+2\right)\left(25^2-1\right)⋮24\forall n\in N\)
Chứng minh \(\left(\frac{n}{2}\right)^n>n!>\left(\frac{n}{3}\right)^n\forall n\ge6\)
CMR: \(\forall n\in N\)thì \(\left|\left\{\frac{n}{1}\right\}-\left\{\frac{n}{2}\right\}+\left\{\frac{n}{3}\right\}-...-\left(-1\right)^n\left\{\frac{n}{n}\right\}\right|< \sqrt{2n}\)
Chứng minh :\(n< \sqrt[3]{n\left(n+1\right)\left(n+2\right)+\sqrt[3]{n\left(n+1\right)\left(n+2\right)+...+\sqrt[3]{n\left(n+1\right)\left(n+2\right)}}}< n+1\left(n\in Z^+\right)\)
CMR:
\(\left(n+1\right)\left(n+2\right)...\left(n+n\right)⋮2^n\left(\forall n\in N\cdot\right)\)
Cho dãy \(\left(u_n\right)\)xác định: \(\hept{\begin{cases}u_1=3\\u_{n+1}=\frac{1}{2}u_n+\frac{n^2}{4n^2+a}\sqrt{u_n^2+3}\forall n\ge1\end{cases}}\)
a) Với a=0, bằng quy nạp hãy chứng minh \(0< u_{n+1}< u_n,\forall n\ge1\)
b) Với a=1, bằng quy nạp hãy chứng minh \(1-\frac{2}{n}< u_n,\forall n\ge2\)