Tham khảo tại đây:
Câu hỏi của nguyen tan 12 - Toán lớp 8 - Học toán với OnlineMath
Chỉ cần đặt \(x=a^2;y=b^2\)
Tham khảo tại đây:
Câu hỏi của nguyen tan 12 - Toán lớp 8 - Học toán với OnlineMath
Chỉ cần đặt \(x=a^2;y=b^2\)
Cho x,y,z là các số thực dương thỏa mãn xy+yz+zx=1
Chứng minh rằng
\(\frac{1}{1+x^2}+\frac{1}{1+y^2}+\frac{1}{1+z^2}\ge\frac{2}{3}\left(\frac{x}{\sqrt{1+x^2}}+\frac{y}{\sqrt{1+y^2}}+\frac{z}{\sqrt{1+z^2}}\right)^3\)
Cho x,y, z > 0 thỏa mãn xyz = 1.
Chứng minh rằng:
\(\frac{\sqrt{1+x^3+y^3}}{xy}+\frac{\sqrt{1+x^3+z^3}}{xz}+\frac{\sqrt{1+y^3+z^3}}{yz}\ge3\sqrt{3}\)
1. Chứng minh \(\sqrt[3]{3+\sqrt[3]{3}}+\sqrt[3]{3-\sqrt[3]{3}}< 2\sqrt[3]{3}\)
2. a) Tính \(A=\frac{2b.\sqrt{x^2-1}}{x-\sqrt{x^2-1}}\) với \(x=\frac{1}{2}\left(\sqrt{\frac{a}{b}}+\sqrt{\frac{b}{a}}\right)\left(a,b>0\right) \)
b) Tính \(B=\frac{xy-\sqrt{x^2-1}.\sqrt{y^2-1}}{xy+\sqrt{x^2-1}.\sqrt{y^2-1}}\) với \(x=\frac{1}{2}\left(a+\frac{1}{a}\right);y=\frac{1}{2}\left(b+\frac{1}{b}\right)\left(a,b\ge1\right)\)
3. Cho x,y thỏa mãn \(xy\ge0\). Tính \(B=\left(\left|\sqrt{xy}+\frac{x}{2}+\frac{y}{2}\right|-\left|x\right|\right)+\left(\left|\sqrt{xy}-\frac{x}{2}-\frac{y}{2}\right|-\left|y\right|\right)\)
4. Cho \(\frac{2x+2\sqrt{x}+13}{\left(\sqrt{x}-2\right)\left(x+1\right)^2}=\frac{A}{\sqrt{x}-2}+\frac{B\sqrt{x}+C}{x+1}+\frac{D\sqrt{x}+E}{\left(x+1\right)^2}\). Tìm các số A,B,C,D,E để đẳng thức trên là đúng với mọi x
Cho các số thực không âm thỏa mãn x+y+z=3 và xy+yz+zx≠0
Chứng minh rằng \(\frac{x+1}{y+1}+\frac{y+1}{z+1}+\frac{z+1}{x+1}\le\frac{25}{3\sqrt[3]{4xy+yz+zx}}\)
Cho x,y,z là các số dương thỏa mãn điểu kiện \(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}=2019\). Chứng minh bất đẳng thức:
\(\frac{x^2+1+\sqrt{2019x^2+1}}{x}+\frac{y^2+1+\sqrt{2019y^2+1}}{y}+\frac{z^2+1+\sqrt{2019z^2+1}}{z}\le2019.2020xyz\)
Cho x,y,z dương thỏa mãn \(x^2+y^2+z^2=3\) . Chứng minh:
\(\frac{1}{4-\sqrt{xy}}+\frac{1}{4-\sqrt{yz}}+\frac{1}{4-\sqrt{zx}}\le1\)
cho các số thực dương x, y, z thỏa mãn: x + y + z = 3.
Chứng minh rằng: \(\frac{1}{\sqrt{xy+x+y}}+\frac{1}{\sqrt{yz+y+z}}+\frac{1}{\sqrt{zx+z+x}}\ge\)\(\sqrt{3}\)
Cho \(x,y>0\)thỏa mãn \(x+y=1\)
Chứng minh \(\frac{1}{x^3+y^3}+\frac{1}{xy}\)\(\ge4+2\sqrt{3}\)
Cho 3 số dương x,y,z thỏa mãn: xy+yz+zx=1. Chứng minh rằng:
\(x\sqrt{\frac{\left(1+y^2\right)\left(1+z^2\right)}{1+x^2}}+y\sqrt{\frac{\left(1+z^2\right)\left(1+x^2\right)}{1+y^2}}+z\sqrt{\frac{\left(1+z^2\right)\left(1+y^2\right)}{1+z^2}}=2\)