TA

chứng minh:

7/12<1/21+1/22+..........+1/40<5/6

H24
27 tháng 2 2016 lúc 23:03

* Ta có : \(\frac{1}{21}>\frac{1}{30};\frac{1}{22}>\frac{1}{30};...;\frac{1}{29}>\frac{1}{30}\)

=> \(\frac{1}{21}+\frac{1}{22}+...+\frac{1}{29}+\frac{1}{30}>\frac{1}{30}+\frac{1}{30}+...+\frac{1}{30}=\frac{10}{30}=\frac{1}{3}\)   (1)

\(\frac{1}{31}>\frac{1}{40};\frac{1}{32}>\frac{1}{40};...;\frac{1}{39}>\frac{1}{40}\)

=> \(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{39}+\frac{1}{30}>\frac{1}{40}+\frac{1}{40}+...+\frac{1}{40}=\frac{10}{40}=\frac{1}{4}\)   (2)

Từ (1) và (2) 

=> \(\frac{1}{21}+\frac{1}{22}+...+\frac{1}{30}+\frac{1}{31}+\frac{1}{32}+...+\frac{1}{40}>\frac{1}{3}+\frac{1}{4}\)

=> \(\frac{1}{21}+\frac{1}{22}+\frac{1}{23}+...+\frac{1}{40}>\frac{7}{12}\)  (*)

* Ta có : \(\frac{1}{21}<\frac{1}{20};\frac{1}{22}<\frac{1}{20};...;\frac{1}{30}<\frac{1}{20}\)

=> \(\frac{1}{21}+\frac{1}{22}+...+\frac{1}{29}+\frac{1}{30}<\frac{1}{20}+\frac{1}{20}+...+\frac{1}{20}=\frac{10}{20}=\frac{1}{2}\)  (3)

\(\frac{1}{31}<\frac{1}{30};\frac{1}{32}<\frac{1}{30};...;\frac{1}{40}<\frac{1}{30}\)

=> \(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{39}+\frac{1}{40}<\frac{1}{30}+\frac{1}{30}+...+\frac{1}{30}=\frac{10}{30}=\frac{1}{3}\)  (4)

Từ (3) và (4) 

=> \(\frac{1}{21}+\frac{1}{22}+...+\frac{1}{30}+\frac{1}{31}+\frac{1}{32}+...+\frac{1}{40}<\frac{1}{2}+\frac{1}{3}\)

=> \(\frac{1}{21}+\frac{1}{22}+\frac{1}{23}+...+\frac{1}{40}<\frac{5}{6}\)    (**)

Từ (*) và (**) ta có : \(\frac{7}{12}<\frac{1}{21}+\frac{1}{22}+\frac{1}{23}+...+\frac{1}{40}<\frac{5}{6}\)  (đpcm)

Bình luận (0)

Các câu hỏi tương tự
ML
Xem chi tiết
DQ
Xem chi tiết
TA
Xem chi tiết
TA
Xem chi tiết
DQ
Xem chi tiết
LG
Xem chi tiết
H24
Xem chi tiết
NT
Xem chi tiết
H24
Xem chi tiết