cm = quy nạp
\(1^2+2^2+...+n^2=\frac{n\left(n+1\right)\left(2n+1\right)}{6}\left(\text{*}\right)\)
*Với n=1 thì (*) đúng
*)Giả sử (*) đúng với n=k khi đó (*) thành
\(1^2+2^2+...+k^2=\frac{k\left(k+1\right)\left(2k+1\right)}{6}\)
Thật vậy cm \(n=k+1\) đúng hay
\(1^2+2^2+...+k^2+\left(k+1\right)^2=\frac{\left(k+1\right)\left(k+2\right)\left(2k+3\right)}{6}\)
Lại có: \(1^2+2^2+...+k^2+\left(k+1\right)^2=\frac{k\left(k+1\right)\left(2k+1\right)}{6}+\frac{6\left(k+1\right)^2}{6}\)
\(=\frac{\left(k+1\right)\left[k\left(2k+1\right)+6\left(k+1\right)\right]}{6}=\frac{\left(k+1\right)\left(2k^2+k+6k+6\right)}{6}\)
\(=\frac{\left(k+1\right)\left(2k^2+3k+4k+6\right)}{6}=\frac{\left(k+1\right)\left[\left(2k^2+3k\right)+\left(4k+6\right)\right]}{6}\)
\(=\frac{\left(k+1\right)\left[k\left(2k+3\right)+2\left(2k+3\right)\right]}{6}=\frac{\left(k+1\right)\left(k+2\right)\left(2k+3\right)}{6}\)
Vậy (*) đúng hay ta có DPCM