\(x^2+y^2-2xy+x-y+1\)\(\left(x-y\right)^2+x-y+1\)
\(\left(x-y\right)=t\Rightarrow t^2-t+1=t^2-2.\frac{1}{2}t+\frac{1}{4}+\frac{3}{4}=\left(t-\frac{1}{2}\right)^2+\frac{3}{4}>0\)
=>đpcm
\(x^2+y^2-2xy+x-y+1\)
\(=\left(x^2-2xy+y^2\right)+\left(x-y\right)+1\)
\(=\left(x-y\right)^2+2\cdot\left(x-y\right)\cdot\frac{1}{2}+\left(\frac{1}{2}\right)^2+\frac{3}{4}\)
\(=\left(x-y+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\forall x;y\)
P.s: cách này dễ hiểu hơn cách của Nguyễn Hưng Phát