NA

Chứng minh với mọi n\(\in\)N*  thì n3+n+2 là hợp số

2U
17 tháng 11 2019 lúc 9:05

\(n^3+n+2\)

\(=n^3-n+2n+2\)

\(=n.\left(n^2-1\right)+2.\left(n+1\right)\)

\(=n.\left(n-1\right).\left(n+1\right)+2.\left(n+1\right)\)

\(=\left(n+1\right)\left(n^2-n+2\right)\)

\(\Rightarrow n^3+n+2\)là hợp số với mọi \(n\inℕ^∗\)

\(\Rightarrowđpcm\)

Bình luận (0)
 Khách vãng lai đã xóa
KN
17 tháng 11 2019 lúc 19:05

Ta có: \(n^3+n+2\)

\(=n^3-n+2n+2\)

\(=n\left(n^2-1\right)+2\left(n+1\right)\)

\(=n\left(n+1\right)\left(n-1\right)+2\left(n+1\right)\)

\(=\left(n+1\right)\left(n^2-n\right)+2\left(n+1\right)\)

\(=\left(n+1\right)\left(n^2-n+2\right)\)

Ta có: \(n^2-n+2=n^2-n+\frac{1}{4}+\frac{7}{4}=\left(n-\frac{1}{2}\right)^2+\frac{7}{4}>0\)

Lại có: \(n^2-n=n\left(n-1\right)\)(tích 2 số tự nhiên liên tiếp chẵn nên \(n^2-n+2\)chẵn)

\(\Rightarrow n^2-n+\frac{1}{2}\)là số dương chẵn

Mà \(n+1>1\)(Vì n dương) nên \(\left(n+1\right)\left(n^2-n+2\right)\)là số tự nhiên chẵn

Vậy \(\left(n+1\right)\left(n^2-n+2\right)\)là hợp số

hay \(n^3+n+2\)là hợp số

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
RN
Xem chi tiết
BL
Xem chi tiết
LC
Xem chi tiết
MS
Xem chi tiết
LC
Xem chi tiết
TA
Xem chi tiết
H24
Xem chi tiết
NA
Xem chi tiết
LC
Xem chi tiết