Copy bài bên k2pi (chưa có đáp án) qua cho mọi người test:v
Cho a, b, c > 0 thỏa mãn ab + bc + ca = abc
Chứng minh \(\frac{a^2}{a+bc}+\frac{b^2}{b+ca}+\frac{c^2}{c+ab}\ge\frac{a+b+c}{4}\)
Cho a,b,c>0, chứng minh:\(\frac{1}{a^2+ab+bc}+\frac{1}{b^2+bc+ca}+\frac{1}{c^2+ca+ab}\ge\frac{\left(a+b+c\right)^2}{\left(ab+bc+ca\right)^2}\)
Chứng minh rằng với mọi a,b,c>0 ta có:
\(\frac{ab}{a+3b+2c}+\frac{bc}{b+3c+2a}+\frac{ca}{c+3a+2b}\le\frac{a+b+c}{6}\)
1, cho a,b,c>0. chứng minh \(a^4+b^4+c^4\ge abc\left(a+b+c\right)\)
2, chứng minh: với mọi a,b \(\ne0\)\(\frac{a^2}{b^2}+\frac{b^2}{a^2}\ge\frac{a}{b}+\frac{b}{a}\)
3,cho các số thực \(\in\)đoạn 0 đến 1. chứng minh:\(a^4+a^3+c^2-ab-bc-ca\le1\)
4,cho a,b,c là các số thực dương tùy ý. chứng minh: \(\frac{a^3+b^3}{ab}+\frac{b^3+c^3}{bc}+\frac{c^3+a^3}{ca}\ge2\left(a+b+c\right)\)
5,cho a,b,c>0. chứng minh\(\frac{a}{bc}+\frac{b}{ac}+\frac{c}{ab}\ge2\left(\frac{1}{a}+\frac{1}{b}-\frac{1}{c}\right)\)
ai làm đk bài nào thì làm hộ e vs ạ
Cho a, b, c > 0. Chứng minh : \(\frac{1}{2a^2+bc}+\frac{1}{2b^2+ca}+\frac{1}{2c^2+ab}\le\left(\frac{a+b+c}{ab+bc+ca}\right)^2\)
cho a,b>0. Chứng minh rằng
\(\frac{2}{a^2+bc}+\frac{2}{b^2+ca}+\frac{2}{c^2+ab}\le\frac{1}{bc}+\frac{1}{ca}+\frac{1}{ab}\)
Chứng minh với mọi a,b,c,d>0 ta có:\(\frac{a^3}{a^2+b^2}+\frac{b^3}{b^2+c^2}+\frac{c^3}{c^2+d^2}+\frac{d^3}{d^2+a^2}\ge\frac{a+b+c+d}{2}\)
Cho a,b,c là các số thực dương thỏa mãn a+b+c = 3
Chứng minh rằng với mọi k > 0 ta luôn có
\(\left(b+c\right)\sqrt[k]{\frac{bc+1}{a^2+1}}+\left(a+c\right)\sqrt[k]{\frac{ac+1}{b^2+1}}+\left(a+b\right)\sqrt[k]{\frac{ab+1}{c^2+1}}\ge6\)
Cho a,b,c>0 và \(a^2+b^2+c^2=1\)Chứng minh:
\(\sqrt{\frac{ab+2c^2}{1+ab-c^2}}+\sqrt{\frac{bc+2a^2}{1+bc-a^2}}+\sqrt{\frac{ca+2b^2}{1+ca-b^2}}\ge2+ab+bc+ca\)