§2. Giá trị lượng giác của một cung

TM

chứng minh (tan^2x-sin^2x)/(cot^2x-cos^2x)=tan^6x

HK
28 tháng 4 2020 lúc 19:55

\(VT=\frac{\frac{\sin^2x}{\cos^2x}-\sin^2x}{\frac{\cos^2x}{\sin^2x}-\cos^2x}=\frac{\frac{\sin^2x-\sin^2x.\cos^2x}{\cos^2x}}{\frac{\cos^2x-\cos^2x.\sin^2x}{\sin^2x}}\)

\(=\frac{\sin^2x}{\cos^2x}.\frac{\sin^2x-\sin^2x.\cos^2x}{\cos^2-\cos^2x.\sin^2x}\)

\(=\frac{\sin^2x}{\cos^2x}.\frac{\tan^2x-\sin^2x}{\cos^2x}=\frac{\sin^2x}{\cos^2x}.\left(\frac{\tan^2x}{\cos^2x}-\tan^2x\right)\)

\(1+\tan^2x=\frac{1}{\cos^2x}\Rightarrow\frac{\tan^2x}{\cos^2x}=\tan^2x\left(1+\tan^2x\right)\)

\(\Rightarrow VT=\tan^2x.\tan^4x=\tan^6x=VP\)

Bình luận (0)
NL
28 tháng 4 2020 lúc 19:40

\(\frac{tan^2x-sin^2x}{cot^2x-cos^2x}=\frac{sin^2x.cos^2x\left(tan^2x-sin^2x\right)}{sin^2x.cos^2x\left(cot^2x-cos^2x\right)}=\frac{sin^4x\left(1-cos^2x\right)}{cos^4x\left(1-sin^2x\right)}=\frac{sin^6x}{cos^6x}=tan^6x\)

Bình luận (1)

Các câu hỏi tương tự
TN
Xem chi tiết
TN
Xem chi tiết
TN
Xem chi tiết
TM
Xem chi tiết
NQ
Xem chi tiết
NH
Xem chi tiết
JE
Xem chi tiết
LT
Xem chi tiết
AT
Xem chi tiết