VU

Chứng Minh : \(\sqrt{3};\sqrt{5};\sqrt{7}+5\)là các số vô tỉ 

PD
22 tháng 11 2017 lúc 22:36

Giả sử \(\sqrt{3}\)là một số hữu tỉ 

\(\Rightarrow\sqrt{3}=\frac{a}{b}\left(a;b\ne0\right);ƯCLN\left(a,b\right)=1 \)

\(\Rightarrow3=\frac{a^2}{b^2}\)

Ta có : \(a^2=3b^2\).Mà 3 là một số nguyên tố 

=> \(a^2⋮3\Leftrightarrow a⋮3\)

Vì \(a⋮3\).=> Đặt a= 3k

=>a2 = 9k2

Thay vào ta có : 

\(3=\frac{a^2}{b^2}\)

\(\Rightarrow b^2=9k^2:3\)

\(\Rightarrow b^2=3k^2\).Vì 3 là số nguyên tố 

\(\Rightarrow b^2⋮3\Leftrightarrow b⋮3\)

Vì \(a⋮3;b⋮3\)trái với UWCLN(a,b) =1

=> \(\sqrt{3}\)là một số vô tỉ

Bình luận (0)
VU
22 tháng 11 2017 lúc 22:37

thank bạn nha

Bình luận (0)

Các câu hỏi tương tự
TH
Xem chi tiết
NC
Xem chi tiết
LV
Xem chi tiết
VC
Xem chi tiết
H24
Xem chi tiết
NQ
Xem chi tiết
DL
Xem chi tiết
LB
Xem chi tiết
H24
Xem chi tiết