PB

Chứng minh rằng:

x3 + y3 ≥ x2y + xy2, ∀x, y ≥ 0

CT
19 tháng 12 2019 lúc 7:43

Với x ≥ 0; y ≥ 0 thì x + y ≥ 0

Ta có: x3 + y3 ≥ x2y + xy2

⇔ (x3 + y3) – (x2y + xy2) ≥ 0

⇔ (x + y)(x2 – xy + y2) – xy(x + y) ≥ 0

⇔ (x + y)(x2 – xy + y2 – xy) ≥ 0

⇔ (x + y)(x2 – 2xy + y2) ≥ 0

⇔ (x + y)(x – y)2 ≥ 0 (Luôn đúng vì x + y ≥ 0 ; (x – y)2 ≥ 0)

Dấu « = » xảy ra khi (x – y)2 = 0 ⇔ x = y.

Bình luận (0)

Các câu hỏi tương tự
PB
Xem chi tiết
NT
Xem chi tiết
PB
Xem chi tiết
H24
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
VL
Xem chi tiết
TK
Xem chi tiết