a)chứng minh rằng nếu p và p^2+8 là các số nguyên tố thì p^2+2 cũng là số nguyên tố
b)Nếu p và 8p^2+1 là các số nguyên tố thì 2p+1 cũng là số nguyên tố
chứng minh rằng:
a, nếu p và p^2+8 là số nguyên tố thì p^2+2 cũng là số nguyên tố
b, nếu p và 8p^2+1 là các số nguyên tố thì 2p+1 cũng là số nguyên tố
Chứng minh rằng:
a) Nếu p và p^2+8 là các số nguyên tố thì p^2 +2 cũng là số nguyên tố
b) Nếu p vaf8p^2 +1 là các số nguyên tố thì 2p+1 cũng là số nguyên tố
CMR:
a) Nếu b là số nguyên tố khác 3 thì A=3n+2+2014b2 là hợp số với mọi số tự nhiên n
b) Nếu p và 8p2+1 là các số nguyên tố thì 8p2+2p+1 là số nguyên tố
c) Nếu k là số tự nhiên lớn hơn 1 thỏa mãn k2+4 và k2+16 là các số nguyên tố thì k chia hết cho 5
Tìm số nguyên tố p sao cho 8p2+1 và 2p+1 cũng là các số nguyên tố
CMR:
a: Nếu p và p2 + 8 là 2 số nguyên tố thi p2 + 2 là số nguyên tố
b: Nếu p va 8p2 + 1 là số nguyên tố thì 2p + 1 là số nguyên tố
CHỨNG MINH RẰNG NẾU P VÀ 8P - 1 ĐỀU LÀ SỐ NGUYÊN TỐ THÌ 8P + 1 LÀ HỢP SỐ
Cho p và 8p - 1 là các số nguyên tố. Chứng minh rằng: 8p + 1 là hợp số
nếu p là số nguyên tố thì 1 trong 2 số 8p-1 và 8p+1 là số nguyên tố thí số còn lai là hợp số hay số nguyên tố