HT

Chứng minh rằng:Nếu \(\frac{a}{b}=\frac{b}{d}\) thì \(\frac{a^2+b^2}{b^2+d^2}=\frac{a}{d}\)

ST
16 tháng 7 2017 lúc 10:17

Đặt \(\frac{a}{b}=\frac{b}{d}=k\)

\(\Rightarrow k^2=\frac{a^2}{b^2}=\frac{b^2}{d^2}\)

Áp dụng TCDTSBN ta có:

\(k^2=\frac{a^2}{b^2}=\frac{b^2}{d^2}=\frac{a^2+b^2}{b^2+d^2}\) (1)

Lại có: \(k^2=k.k=\frac{a}{b}\cdot\frac{b}{d}=\frac{a}{d}\) (2)

Từ (1) và (2) suy ra \(\frac{a^2+b^2}{b^2+d^2}=\frac{a}{d}\) (đpcm)

Bình luận (0)
HT
16 tháng 7 2017 lúc 10:20

Cảm ơn bạn bạn giải bài tiếp theo ik bài mà mk nvuwaf đăng í tìm 3 số ....

cảm ơn nhìu

Bình luận (0)
ML
6 tháng 8 2019 lúc 16:55

hay, hay đêý

Bình luận (0)

Các câu hỏi tương tự
CL
Xem chi tiết
CC
Xem chi tiết
TD
Xem chi tiết
VT
Xem chi tiết
H24
Xem chi tiết
TD
Xem chi tiết
YS
Xem chi tiết
NT
Xem chi tiết
HT
Xem chi tiết