Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

NM

chứng minh rằng:n và n\(^5\) có chữ số tận cùng giống nhau

PC
12 tháng 9 2018 lúc 20:22

Ta có: \(n^5-n\) 

\(=n\left(n^4-1\right)\) 

\(=n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)\) 

\(=n\left(n-1\right)\left(n+1\right)\left(n^2-4+5\right)\) 

\(=n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)+5n\left(n-1\right)\left(n+1\right)\) 

Lại có: n(n-1)(n+1)(n-2)(n+2) là tích 5 số nguyên liên tiếp chia hết cho 5 

          5n(n-1)(n+1) chia hết cho 5

=> n5-n chia hết cho 5 (1) 

Mặt khác: n(n-1)(n-2)(n+2) chia hết cho 2 

               5n(n-1)(n+1) chia hết cho 2 

=> n5-n chia hết cho 2 (2) 

Từ (1) và (2) =>n5-n chia hết cho 10 

=> n và n5 có chữ số tận cùng giống nhau

Bình luận (0)

Các câu hỏi tương tự
DD
Xem chi tiết
NT
Xem chi tiết
NC
Xem chi tiết
VA
Xem chi tiết
MD
Xem chi tiết
TN
Xem chi tiết
DC
Xem chi tiết
VN
Xem chi tiết
NN
Xem chi tiết