Bài tập 3* . Chứng minh rằng :
\(x^2+y^2+\frac{1}{x}+\frac{1}{y}\ge2\left(\sqrt{x}+\sqrt{y}\right)\) với x, y > 0
Bài tập 5* . Chứng minh rằng :
\(\frac{a}{b+c+1}+\frac{b}{a+c+1}+\frac{c}{a+b+1}+\left(1-a\right)\left(1-b\right)\left(1-c\right)\le1\)với \(0\le a,b,c\le1\)
Bài tập 9* . Chứng minh rằng :
\(\frac{1}{a^3+b^3+abc}+\frac{1}{b^3+c^3+abc}+\frac{1}{a^3+c^3+abc}\le\frac{1}{abc}\)với a, b, c > 0
Chứng minh rằng \(\forall a\ne\pm1\)thì \(B=\left(\frac{6x-^2}{x+1}+\frac{10}{^2-1}\right)\frac{^2+1}{2}-\frac{5x}{x-1}\)luôn có giá trị âm
1) Với x, y là các số thực dương thảo mãn \(\frac{x}{2}+\frac{y}{3}+\frac{xy}{6}=3\), chứng minh rằng \(27x^3+8y^3\ge432\)
2) Với a, b, c không âm thỏa mãn \(a^2+b^2+c^2=1\), chứng minh rằng \(a^3+2b^3+3c^3\ge\frac{6}{7}\)
3) Cho x, y, z là các số thực dương có tổng bằng 1, chứng minh rằng \(x+\sqrt{xy}+\sqrt[3]{xyz}\le\frac{4}{3}\)
1. cho các số nguyên a,b,c,d khác 0 thỏa mãn ab=cd
chứng minh rằng \(a^{2014}+b^{2014}+c^{2014}+d^{2014},\) là hợp số
2. xác định đa thức f(x)=\(x^2+a.x+b\)biết rằng \(\left|f\left(x\right)\right|\le\frac{1}{2}\forall x\)
thỏa mãn \(-1\le x< 1\)
Cho biểu thức : A= \(\frac{x^{2^{ }}+x}{x^2-2x+1}\): \(\left(\frac{x+1}{x}-\frac{1}{1-x}+\frac{2-x^2}{x^2-x}\right)\)
a) Rút gọn A
b) Tính giá trị của A khi |2x-5|=3
c) Tìm x để A=4
d)Tìm x để A<2
e) Tìm x\(\in\)Z để A\(\in\)Z
f) Tìm x\(\in\)Z để A\(\in\)N
g) Với x>1. Chứng minh rằng: A>1 \(\forall\)x
cho a,b,c >0, thỏa mãn abc=1. Chứng minh rằng \(\frac{1}{a^2+2b^2+3}+\frac{1}{b^2+2c^2+3}+\frac{1}{c^2+2a^2+3}\le\frac{1}{2}\)
Cho ba số dương a,b và c thỏa mãn abc = 1 . Chứng minh rằng :
\(\frac{1}{a^2+2b^2+3}+\frac{1}{b^2+2c^2+3}+\frac{1}{c^2+2a^2+3}\le\frac{1}{2}\)
CHO a,b,c > 0 thõa mãn abc=1. Chứng minh rằng \(\frac{1}{a^2+2b^2+3}+\frac{1}{b^2+2c^2+3}+\frac{1}{c^2+2b^2+3}\le\frac{1}{2}\)
Bài 1: a) Cho a+b+c=6 và ab+bc+ac=9. Chứng minh rằng 0<a<4; 0<b<4; 0<c<4.
b) Cho a+b+c=2 và a2+b2+c2=2. Chứng minh rằng: \(0\le a\le\frac{4}{3};\)\(0\le b\le\frac{4}{3};\)\(0\le c\le\frac{4}{3}.\)