Ta có thể thấy: \(\frac{1}{2000}\) là số hạng nhỏ nhất của dãy.
Xét các mẫu, ta tính được số các số hạng của dãy là:
\(\frac{2000-100}{1}+1=1901\)(số)
\(\Rightarrow\frac{1}{100}+\frac{1}{101}+...+\frac{1}{2000}>\frac{1}{2000}+\frac{1}{2000}+...+\frac{1}{2000}\)
( 1901 số \(\frac{1}{2000}\))
\(\Rightarrow\frac{1}{100}+\frac{1}{101}+...+\frac{1}{2000}>\frac{1901}{2000}>\frac{1000}{2000}=\frac{1}{2}\)
Vậy \(\frac{1}{100}+\frac{1}{101}+...+\frac{1}{2000}>\frac{1}{2}\)