Chương I - Căn bậc hai. Căn bậc ba

VH

\(\dfrac{1}{\sqrt{2}+\sqrt{3}}+\dfrac{1}{\sqrt{3}+\sqrt{4}}+...+\dfrac{1}{\sqrt{2008}+\sqrt{2009}}\)

- rút gọn giúp em vs ạ

PL
20 tháng 7 2018 lúc 9:05

\(\dfrac{1}{\sqrt{2}+\sqrt{3}}+\dfrac{1}{\sqrt{3}+\sqrt{4}}+...+\dfrac{1}{\sqrt{2008}+\sqrt{2009}}=\dfrac{\sqrt{3}-\sqrt{2}}{3-2}+\dfrac{\sqrt{4}-\sqrt{3}}{4-3}+...+\dfrac{\sqrt{2009}-\sqrt{2008}}{2009-2008}=\sqrt{3}-\sqrt{2}+\sqrt{4}-\sqrt{3}+...+\sqrt{2009}-\sqrt{2008}=\sqrt{2009}-\sqrt{2}\)

Bình luận (0)
ND
20 tháng 7 2018 lúc 9:00

\(\dfrac{1}{\sqrt{2}+\sqrt{3}}+\dfrac{1}{\sqrt{3}+\sqrt{4}}+...+\dfrac{1}{\sqrt{2008}+\sqrt{2009}}\)

\(=\dfrac{\sqrt{2}-\sqrt{3}}{\left(\sqrt{2}+\sqrt{3}\right)\left(\sqrt{2}-\sqrt{3}\right)}+\dfrac{\sqrt{3}-\sqrt{4}}{\left(\sqrt{3}+\sqrt{4}\right)\left(\sqrt{3}-\sqrt{4}\right)}+...+\dfrac{\sqrt{2008}-\sqrt{2009}}{\left(\sqrt{2008}+\sqrt{2009}\right)\left(\sqrt{2008}-\sqrt{2009}\right)}\)

\(=\dfrac{\sqrt{2}-\sqrt{3}}{2-3}+\dfrac{\sqrt{3}-\sqrt{4}}{3-4}+...+\dfrac{\sqrt{2008}-\sqrt{2009}}{2008-2009}\)

\(=-\sqrt{2}+\sqrt{3}-\sqrt{3}+\sqrt{4}-...-\sqrt{2008}+\sqrt{2009}\)

\(=-\sqrt{2}+\sqrt{2009}\)

Bình luận (0)

Các câu hỏi tương tự
NC
Xem chi tiết
H24
Xem chi tiết
TN
Xem chi tiết
NT
Xem chi tiết
TD
Xem chi tiết
H24
Xem chi tiết
LL
Xem chi tiết
LL
Xem chi tiết
NS
Xem chi tiết