Chương I - Căn bậc hai. Căn bậc ba

VQ

a,Cho a +b =2 C/m \(B=a^5+b^5\ge2\)

b,Cho các số dường a,b,x,y t/m ĐK \(x^2+y^2=1\)\(\dfrac{x^4}{a}+\dfrac{y^4}{b}=\dfrac{1}{a+b}\).C/m \(\dfrac{x}{\sqrt{a}}+\dfrac{\sqrt{b}}{y}\ge2\)

c,Với x,y là các số dương t/m: \(\left(xy+\sqrt{\left(1+x^2\right)\left(1+y^2\right)}\right)^2=2010\) .Tính \(A=x\sqrt{1+y^2}+y\sqrt{1+x^2}\)

d,Chứng minh A=\(A=\sqrt{1+2008^2+\dfrac{2008^2}{2009^2}}+\dfrac{2008}{2009}\) có giá trị là 1 số tự nhiên

UK
9 tháng 10 2017 lúc 17:09

c) \(A^2=x^2\left(1+y^2\right)+y^2\left(1+x^2\right)+2xy\sqrt{\left(1+x^2\right)\left(1+y^2\right)}\)

\(=x^2y^2+x^2+x^2y^2+y^2+1+2xy\sqrt{\left(1+x^2\right)\left(1+y^2\right)}-1\)

\(=x^2y^2+\left(1+x^2\right)\left(1+y^2\right)+2xy\sqrt{\left(1+x^2\right)\left(1+y^2\right)}-1\)

\(=\left[xy+\sqrt{\left(1+x^2\right)\left(1+y^2\right)}\right]^2-1=2010-1=2009\)

Vì A>0 nên \(A=\sqrt{2009}\)

Bình luận (0)
UK
9 tháng 10 2017 lúc 17:26

d) \(2009^2=\left(2008+1\right)^2=2008^2+2.2008+1\)

\(1+2008^2=2009^2-2.2008=2009^2-2.2009\dfrac{2008}{2009}\)

\(A=\sqrt{2009^2-2.2009.\dfrac{2008}{2009}+\dfrac{2008^2}{2009^2}}+\dfrac{2008}{2009}\)

\(A=\sqrt{\left(2009-\dfrac{2008}{2009}\right)^2}+\dfrac{2008}{2009}=2009-\dfrac{2008}{2009}+\dfrac{2008}{2009}=2009\)

Bình luận (0)
UK
9 tháng 10 2017 lúc 17:34

b) Áp dụng BĐT Cauchy-Schwarz, ta có:

\(\dfrac{x^4}{a}+\dfrac{y^4}{b}\ge\dfrac{\left(x^2+y^2\right)}{a+b}=\dfrac{1}{a+b}\)

Đẳng thức xảy ra khi: \(\dfrac{x^2}{a}=\dfrac{y^2}{b}\)

Vậy: Ta chứng minh được: \(x^2b=y^2a\Rightarrow x\sqrt{b}=y\sqrt{a}\)

Áp dụng BĐT Cauchy, ta có:

\(\dfrac{x}{\sqrt{a}}+\dfrac{\sqrt{b}}{y}\ge2\sqrt{\dfrac{x}{\sqrt{a}}.\dfrac{\sqrt{b}}{y}}=2\)

Vậy ta có đpcm

Bình luận (0)

Các câu hỏi tương tự
TT
Xem chi tiết
NJ
Xem chi tiết
QB
Xem chi tiết
NQ
Xem chi tiết
DN
Xem chi tiết
NA
Xem chi tiết
DL
Xem chi tiết
HD
Xem chi tiết
QT
Xem chi tiết