- Chia hết cho 3:
A=(2+2^2)+(2^3+2^4)+.........+(2^59+2^60)
A=2.(2+1)+2^3.(2+1)+..........+2^59(2+1)
A=2.3+2.2^3+........+2^59.3
A=(2+2^3+.......+2^59).3
Vậy A chia hết cho 3
- Chia hết cho 7:làm như trên (ghép 3 số)
- Chia hết cho 15:làm như trên (ghép 4 số)
Nhớ tích đúng cho mình nha
* Ta có: A = \(2+2^2+2^3+...+2^{60}=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{59}+2^{60}\right)\)
= \(\left(2+2^2\right)+\left(2+2^2\right)\times2^2+...+\left(2+2^2\right)\times2^{58}\)
= \(6+6\times2^2+...+6\times2^{58}\)
= \(6\times\left(1+2^2+...+2^{58}\right)\)
= \(2\times3\times\left(1+2^2+...+2^{58}\right)\) chia hết cho 3
=> A chia hết cho 3
* Ta có: A = \(2+2^2+2^3+...+2^{60}=\left(2+2^2+2^3\right)+...+\left(2^{58}+2^{59}+2^{60}\right)\)
= \(\left(2+2^2+2^3\right)+...+\left(2+2^2+2^3\right)\times2^{57}\)
= \(14+...+14\times2^{57}\)
= \(14\times\left(1+...+2^{57}\right)\)
= \(2\times7\times\left(1+...+2^{57}\right)\) chia hết cho 7
=> A chia hết cho 7
* Ta có: A = \(2+2^2+2^3+...+2^{60}=\left(2+2^2+2^3+2^4\right)+...+\left(2^{57}+2^{58}+2^{59}+2^{60}\right)\)
= \(\left(2+2^2+2^3+2^4\right)+...+\left(2+2^2+2^3+2^4\right)\times2^{56}\)
= \(30+...+30\times2^{56}\)
= \(30\times\left(1+...+2^{56}\right)\)
= \(2\times15\times\left(1+...+2^{56}\right)\) chia hết cho 15
=> A chia hết cho 15
Nhấn đúng cho mk nha!!!!!