PD

Chứng minh rằng:

a) \(\left(a^2-b^2\right)\left(c^2-d^2\right)=\left(ac+bd\right)^2-\left(ad+bc\right)^2\)

b) Nếu \(x^2+y^2+z^2=xy+xz+yz\)  thì x=y=z

 

HN
11 tháng 8 2021 lúc 9:36

a/ \(\left(a^2-b^2\right)\left(c^2-d^2\right)=a^2c^2-a^2d^2-b^2c^2+b^2d^2\)

\(=\left(a^2c^2+2abcd+b^2d^2\right)-\left(a^2d^2+2abcd+b^2c^2\right)\)

\(=\left(ac+bd\right)^2-\left(ad+bc\right)^2\)

Bình luận (0)
HN
11 tháng 8 2021 lúc 9:40

b/ \(x^2+y^2+z^2=xy+yz+zx\)

\(\Leftrightarrow2x^2+2y^2+2z^2=2xy+2yz+2zx\)

\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(z^2-2zx+x^2\right)=0\)

\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-y=0\\y-z=0\\z-x=0\end{matrix}\right.\)

\(\Leftrightarrow x=y=z\)

Bình luận (0)