Lời giải:
$A=36^{36}-9^{10}=4^{36}.9^{36}-9^{10}$
$=9^{10}(4^{36}.9^{26}-1)$
Hiển nhiên $9^{10}\vdots 9\Rightarrow A\vdots 9$
Lại có:
$4\equiv -1\pmod 5; 9\equiv -1\pmod 5$
$\Rightarrow 4^{36}.9^{26}\equiv (-1)^{36}(-1)^{26}\equiv 1\pmod 5$
$\Rightarrow 4^{36}.9^{26}-1\vdots 5$
$\Rightarrow A\vdots 5$
Vậy $A\vdots 5; A\vdots 9\Rightarrow A\vdots 36$