2^1995 - 1 = ( 2^5)^399 = 32^399 -1
Ma 32 dong du vs 1( mod 31 )
=> 32^399 dong du vs 1( mod 31 )
=> 32^399 dong du vs 0( mod 31 )
=> 2^1995 - 1 chia het cho 31 ( dpcm )
Ta có: \(2^{1995}=\left(2^5\right)^{399}=32^{399}⋮32\)
Mà \(32\equiv1\)(mod 31)
\(\Rightarrow2^{1995}\equiv1\)(mod 31)
\(\Rightarrow2^{1995}-1⋮31\)(đpcm)
Ta có : \(2^{1995}=2^{1990}\cdot2^5=2^{1990}\cdot32\)
Vì \(32\div31\)dư 1 \(\Rightarrow32\cdot2^{1990}⋮31\)
vạy \(2^{1995}-1⋮31\)