Chứng minh
a) 2^1000-1 chia hết cho 3
b) 19^45+19^30 chia hết cho 20
Bài 13 tìm số trong phép chia của số
a)A=48^15 cho cho 7
b) B=2011^2012 chia cho 7
c)C=2013^2011+2015^2013 chia cho 9
chứng minh rằng với mọi a thuộc Z
1, a2015.b2011-a2011.b2015 chia hết cho 30
2, a4+6a3+11a2+6a chia hết cho 24
cho S = 31 + 33 + 35 +.... + 32011 + 32013 + 32015
chứng tỏ S chia hết cho 70 và ko chia hết cho 9
Nhờ mọi người giải giúp mình với
Bài 1: cho a+b=c+d và a^3+b^3=c^3+d^3 chứng minh rằng a^2019+b^2019=c^2019+d^2019
Bài 2: chứng minh rằng nếu a^3+b^3+c^3 = (a+b+c)^3 thì a^2013+b^2013+c^2013 = (a+b+c)^2013
chứng minh \
20182-1 chia hết cho 2017 và 2019
20203+1 chia hết cho 2021
20213-1 chia hết cho 2020
Cho A=1^2011+2^2011+3^2011+...99^2011+100^2011 và B=1+2+3+...+99+100.Chứng minh rằng A chia hết cho B
Cho M=3^2012-3^2011+3^2010-3^2009+3^2008 \(M=3^{2012}-2^{2011}+3^{2010}-3^{2009}+3^{2008}\)
Chứng minh rằng M chia hết cho 10
chứng minh rằng 2013\(^{2015}\)+2015\(^{2013}\) chia hết cho 2014
Chứng minh rằng:
a,a2017-a2015 chia hết cho 6 (a thuộc Z)
b,a3+b3+c3 chia hết cho 6 => a+b+c chia hết cho 6 (a,b thuộc Z)
c,a3b-ab3 chia hết cho 6 (a,b thuộc Z)