PB

Chứng minh rằng:

1.Mọi số nguyên tố lớn hơn 2 đều có dạng  4 n ±   1

2. Mọi số nguyên tố lớn hơn 3 đều có dạng  6 n   ±   1

CT
27 tháng 4 2018 lúc 9:11

1. Khi chia một số tự nhiên A lớn hơn 2 cho 4 thì ta được các số dư 0, 1, 2, 3 . Trường hợp số dư là 0 và 2 hai thì A là hợp số, ta không xột chỉ xột trường hợp số dư là 1 hoặc 3

  Với mọi trường hợp số dư là 1 ta có  A =  4 n   ±   1

  Với trường hợp số dư là 3 ta có A =  6 n   ±   1

Ta có thể viết  A = 4m + 4 – 1

                           =  4(m + 1) – 1

Đặt  m + 1 = n, ta có  A = 4n – 1

2.     Khi chia số tự nhiên A cho 6 ta có các số dư 0, 1, 2, 3, 4, 5. Trường hợp số dư 0, 2, 3, 4. Ta có A chia hết cho 2 hoặc A chia hết cho 3 nên A là hợp số

Trường hợp dư 1 thì  A = 6n + 1

Trường hợp dư 5 thì   A = 6m + 5    

                                       = 6m + 6 – 1

                                       6(m + 1 ) – 1

Đặt m + 1 = n     Ta có  A = 6n – 1

Bình luận (0)

Các câu hỏi tương tự
HA
Xem chi tiết
TN
Xem chi tiết
H24
Xem chi tiết
DT
Xem chi tiết
H24
Xem chi tiết
TC
Xem chi tiết
AT
Xem chi tiết
NK
Xem chi tiết
H24
Xem chi tiết