Chứng tỏ rằng:
\(1-\frac{1}{2}+\frac{1}{3}-...-\frac{1}{1990}=\frac{1}{996}+\frac{1}{997}+...+\frac{1}{990}\)
Chứng minh rằng : 1 - 1/2 + 1/3 - ... - 1/1990 = 1/996 + 1/997 +.....+ 1/1990
chứng tỏ rằng:
a) 1.3.5. ... .99= 51/2.52/2. ... .100/2
b) 1-1/2+1/3-...-1/1990=1/996+1/997+...+1/990
1,CMR:\(1-\dfrac{1}{2}-\dfrac{1}{3}-...-\dfrac{1}{1990}=\dfrac{1}{996}+\dfrac{1}{997}+...+\dfrac{1}{990}\)
Chứng minh:
1-1/2+1/3+1/4+...+1/1990=1/996+1/997+1/1990
1,CMR:
B,\(1-\frac{1}{2}-\frac{1}{3}-\frac{1}{4}-...-\frac{1}{1990}=\frac{1}{996}+\frac{1}{997}+\frac{1}{990}\)
chứng tỏ rằng:
a) 1.3.5. ... .99= 51/2.52/2. ... .100/2
b) 1-1/2+1/3-...-1/1990=1/996+1/997+...+1/990
chứng tỏ rằng 1 - 1/2 + 1/3 - 1/4 + .... - 1/1990 = 1/996 + 1/997 + 1/998 + ... + 1/1990
Chứng minh rằng: \(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+.........-\frac{1}{1996}=\frac{1}{996}+\frac{1}{997}+....+\frac{1}{990}\)