Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Bài 1:Cho \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\) và x,y,z khác 0.Chứng minh \(x^2+y^2+z^2=\left(x+y+x\right)^2\)
Bài 2: Chúng minh rằng:\(a^2+b^2+c^2=ab+bc+ac\)thì a=b=c
Bài 3: Chứng minh rằng với mọi số nguyên n thì A=\(n^3\cdot\left(\left(n^2-7\right)^2\right)-36n\)chia hết cho 105
chứng min rằng với mọi số nguyên n thì A=\(n^3\left(n^2-7\right)^2-36n\) chia hết cho 105
chứng minh rằng với mọi n thì B=n^3(n^2-7)^2-36n chia hết cho 105 ?
a) Phân tích đa thức sau thành nhân tử: \(x^3\left(x^2-7\right)^2-36x\)
b)Cho biểu thức: \(A=n^3\cdot\left(n^2-7\right)^2-36n\)
Chứng minh rằng A chia hết cho 5040 với mọi số tự nhiên n
chứng minh rằng với mọi số nguyên thì : A=n3(n2-7)^2-36n chia hết cho 105
Câu 1: Cho f(x) = 6x4 – 7x3 + ax2 + 3x +2 và g(x) = x2 – x + b. Xác định a và b để f(x) chia hết cho g(x).
Câu 2:Chứng minh rằng với mọi số nguyên n , ta có \(A=\left[n^3\left(n^2-7\right)^2-36n\right]\) chia hết cho 7
Chứng minh rằng:
\(A=n^3\left(n+7\right)^2-36n\) chia hết cho 5040
Chứng minh rằng:
\(A=n^3\left(n+7\right)^2-36n\) chia hết cho 5040
Chứng minh rằng với mọi số nguyên n thì số:
B= n3 ( n2 - 7)2 -36n chia hết cho 105