Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

LN

chứng minh rằng Với P là một số nguyên tố P>5 thì P mũ 4 -1 chia hết cho 240

 

SG
10 tháng 7 2016 lúc 18:40

Ta có:

p4 - 1

= (p2 - 1).(p2 + 1)

 - Do p nguyên tố, p > 5 => p không chia hết cho 3 => p2 không chia hết cho 3

=> p2 chia 3 dư 1 

=> p2 - 1 chia hết cho 3 => p4 - 1 chia hết cho 3 (1)

- Do p nguyên tố, p > 5 => p lẻ => plẻ

=> p2 chia 8 dư 1

=> p- 1 chia hết cho 8 => p4 - 1 chia hết cho 8 (2)

- Do p nguyên tố, p > 5 => p không chia hết cho 5 => p2 không chia hết cho 5

=> p2 chia 5 dư 1 hoặc 4

+ Nếu p2 chia 5 dư 1 => p2 - 1 chia hết cho 5 => p4 - 1 chia hết cho 5

+ Nếu p2 chia 5 dư 4 => p2 + 1 chia hết cho 5 => p4 - 1 chia hết cho 5 

=> p4 - 1 luôn chia hết cho 5 (3)

Từ (1); (2); (3), do 3;5;8 nguyên tố cùng nhau từng đôi một => p4 - 1 chia hết cho 120

Mà p2 lẻ => p2 + 1 chẵn => p2 + 1 chia hết cho 2

=> p4 - 1 chia hết cho 240

Ủng hộ mk nha ^_-

Bình luận (0)

Các câu hỏi tương tự
DH
Xem chi tiết
NN
Xem chi tiết
NN
Xem chi tiết
PB
Xem chi tiết
TP
Xem chi tiết
VP
Xem chi tiết
VA
Xem chi tiết
VP
Xem chi tiết
SL
Xem chi tiết