Ôn tập toán 7

5H

Chứng minh rằng với n ε  N*    ta luôn có:

a) n3 + 3n2 + 5n chia hết cho 3;

b) 4n + 15n - 1 chia hết cho 9;

c) n3 + 11n chia hết cho 6.



 

TN
5 tháng 6 2016 lúc 9:22

a)Đặt \(E_n=n^3+3n^2+5n\)

Với n=1 thì E1=9 chia hết 3Giả sử En đúng với \(n=k\ge1\) nghĩa là:

\(E_k=k^3+3k^2+5k\) chia hết 3 (giả thiết quy nạp)

Ta phải chứng minh Ek+1 chia hết 3,tức là:

Ek+1=(k+1)3+3(k+1)2+5(k+1) chia hết 3

Thật vậy:

Ek+1=(k+1)3+3(k+1)2+5(k+1)

       =k3+3k2+5k+3k2+9k+9=Ek+3(k2+3k+3)

Theo giả thiết quy nạp thì Ek chia hết 3

ngoài ra 3(k2+3k+3) chia hết 3 nên Ek chia hết 3

=>Ek chia hết 3 với mọi \(n\in N\)*

Bình luận (0)
QT
30 tháng 8 2019 lúc 22:57

c) n^3-n+12n

= n(n^2-1)+12n

n(n-1)(n+1)+12n

Ta thấy 3 số tự nhiên liên tiếp (n-1)n(n+1) ít nhất có 1 số chia hết cho 2, và ít nhất có 1 số chia hết cho 3, suy ra tích chia hết cho 6 mà 12n =6x2n chia hết cho 6 suy ra điều phải chứng minh

Bình luận (0)

Các câu hỏi tương tự
ND
Xem chi tiết
PU
Xem chi tiết
HT
Xem chi tiết
AN
Xem chi tiết
NT
Xem chi tiết
H24
Xem chi tiết
NM
Xem chi tiết
AN
Xem chi tiết
NC
Xem chi tiết