CG

Chứng minh rằng với mọi số tự nhiên n>4 thì phân số 4/n bằng tổng của 3 phân số Ai Cập khác nhau.

LH
7 tháng 2 2016 lúc 13:23

gọi 3 phân số đó là
1/a; 1/b; 1/c
vậy ta có: 1/a + 1/b +1/c = 4/n
suy ra n(ab+bc+ca)=4abc (1)
bài toán trên trở thành chứng minh phương trình (1) luôn tồn tại 1cặp nghiệm nguyên(a,b,c)

Bình luận (0)
OO
7 tháng 2 2016 lúc 13:24

Mình có lời giải này, nếu có chỗ nào sai thì các bạn góp ý nhé:
Nếu n = 3k. Khi đó:

\frac{4}{n} \ = \ \frac{1}{n} \ + \ \frac{3}{n} \ = \ \frac{1}{n+1} \ + \ \frac{1}{n (n+1)} \ + \ \frac{3}{n} \ = \ \frac{1}{3k+1} \ + \ \frac{1}{3k(3k+1)} \ + \ \frac{1}{k}

Nếu n = 3k + 2. Khi đó:

\frac{4}{n} \ = \ \frac{3}{n} \ + \ \frac{1}{n} \ = \ \frac{3}{n+1} \ + \ \frac{3}{n(n+1)} \ + \ \frac{1}{n} \ = \ \frac{1}{k+1} \ + \ \frac{1}{(3k+2)(k+1)} \ + \ \frac{1}{3k+2}

Nếu n = 3k + 1. Khi đó:

\frac{4}{n} \ = \ \frac{3}{n} \ + \ \frac{1}{n} \ = \ \frac{3}{n-1} \ - \ \frac{3}{n(n-1)} \ + \ \frac{1}{n} \ = \ \frac{1}{k} \ - \ \frac{1}{k(3k+1)} \ + \ \frac{1}{3k+1} \ = \ \frac{1}{k} \ + \ \frac{1}{-k(3k+1)} \ + \ \frac{1}{3k+1}

Bình luận (0)

Các câu hỏi tương tự
TN
Xem chi tiết
TT
Xem chi tiết
PH
Xem chi tiết
OO
Xem chi tiết
KT
Xem chi tiết
MN
Xem chi tiết
NA
Xem chi tiết
PY
Xem chi tiết
PD
Xem chi tiết