Ta có
5^n+2-2^n+3+5^n-2^n+2-2^n
=(5^n+2+5^n)-(2^n+3+2^n+2+2^n)
=5^n(25+1)-2^n(8+4+1)
= 5^n .26-2^n .13
=13(5^n .2-2^n) chia hết cho 13
Ta có
5^n+2-2^n+3+5^n-2^n+2-2^n
=(5^n+2+5^n)-(2^n+3+2^n+2+2^n)
=5^n(25+1)-2^n(8+4+1)
= 5^n .26-2^n .13
Ta có
5^n+2-2^n+3+5^n-2^n+2-2^n
=(5^n+2+5^n)-(2^n+3+2^n+2+2^n)
=5^n(25+1)-2^n(8+4+1)
= 5^n .26-2^n .13
=13(5^n .2-2^n) chia hết cho 13
Ta có
5^n+2-2^n+3+5^n-2^n+2-2^n
=(5^n+2+5^n)-(2^n+3+2^n+2+2^n)
=5^n(25+1)-2^n(8+4+1)
= 5^n .26-2^n .13
(f) Chứng minh rằng với mọi số tự nhiên n > 1 thì: 5^n+2 + 26.5^n + 82n+1 chia hết cho 59.
(g) Chứng minh rằng với mọi số tự nhiên n > 1 thì số 4^2n+1 + 3^n+2chia hết cho 13.
(h) Chứng minh rằng với mọi số tự nhiên n > 1 thì số 5^2n+1 + 2^n+4+ 2^n+1 chia hết cho 23.
(i) Chứng minh rằng với mọi số tự nhiên n > 1 thì số 11n+2 + 122n+1 chia hết cho 133.
(j) Chứng minh rằng với mọi số tự nhiên n > 1: 5^2n−1 .26n+1 + 3^n+1 .2^2n−1 chia hết cho 38
Bài 1.Tìm số tự nhiên n sao cho: 2n + 7 chia hết cho n + 2
Bài 2.Chứng minh rằng:
a/ Với mọi số tự nhiên n thì (n+3)(n+10) chia hết cho 2
b/ Với mọi số tự nhien n thì (n+3)(n+6) chia hết cho 2
c/ Với mọi số tự nhiên n thì (5n+7)(4n+6) chia hết cho 2
1,Tìm n ∈N sao cho 2n+7 chia hết cho 31
Chứng tỏ rằng với mọi số tự nhiên n thì :n2+5n+5 ko chia hết cho 25
chứng minh rằng: A=5n(5n+1)−6n(3n+2n)A=5n(5n+1)−6n(3n+2n) chia hết cho 91 với mọi số nguyên dương n
Chứng minh với mọi số tự nhiên n thì :
a)10^n+8 chia hết cho 9
b)(n+10)n+15 chia hết cho 2
c)(3^n+5)*5n+2 chia hết cho 2
d)(2n+3)*4n+1 không chia hết cho 2
Chứng minh rằng với mọi số tự nhiên n thì các số sau nguyên tố cùng nhau:
a, 2n+3 và 4n+8
b, 2n+5 và 3n+7
c, 7n+10 và 5n+7
Chứng minh rằng với mọi số tự nhiên n thì các số sau nguyên tố cùng nhau:
a) 2 n + 3 v à 4 n + 8
b) 2 n + 5 v à 3 n + 7
c) 7 n + 10 v à 5 n + 7
Chứng minh rằng các phân số tối giản với mọi số tự nhiên:
a/ n+1: 2n+3
b/ 2n+3: 4n+8
c/ 3n+2 : 5n+3
a, Tìm tất cả các số tự nhiên n thỏa mãn 5n+7 chia hết cho 2n+1
b, Chứng minh rằng nếu n và 2n+1 là số tự nguyên tố thì 4n+1 hợp số
Cho mk cách làm lớp 6 ạ
?
Bài 5: Chứng minh rằng: Tổng lập phương của 3 số nguyên liên tiếp luôn chia hết cho 9. (a^3 đọc
là a lập phương)
Bài 6: Chứng minh rằng:
a) n(n + 1) (2n + 1) chia hết cho 6
b) n^5 - 5n^3 + 4n chia hết cho 120 Với mọi số n thuộc N
Bài 7: Chứng minh rằng: n^4 + 6n^3 + 11n^2 + 6n chia hết cho 24 Với mọi số n Z
Bài 8: Chứng minh rằng: Với mọi số tự nhiên n lẻ thì :
a) n^2 + 4n + 3 chia hết cho 8
b) n^3 + 3n^2 - n - 3 chia hết cho 48
c) n^12 - n^8 - n^4 + 1chia hết cho 512
Bài 9: Chứng minh rằng:
a) Với mọi số nguyên tố p>3 thì p^2 – 1 chia hết cho 24
b) Với mọi số nguyên tố p, q >3 thì p^2 – q^2 chia hết cho 24
Bài 10: Chứng minh rằng:
n^3 + 11n chia hết cho 6 với mọi số n thuộc Z.
HD: Tách 11n = 12n – n