Gọi d là ƯCLN(2n+1, 3n+2)
Ta có: 2n+1 chia hết cho d, 3n+2 chia hết cho d
=> 2(3n+2) - 3(2n+1) chia hết cho d
=> 1 chia hết cho d
=> d = 1
Vậy 2n+1 và 3n+2 là 2 số nguyên tố cùng nhau
cre: h
Gọi d là ƯCLN(2n+1, 3n+2)
Ta có: 2n+1 chia hết cho d, 3n+2 chia hết cho d
=> 2(3n+2) - 3(2n+1) chia hết cho d
=> 1 chia hết cho d
=> d = 1
Vậy 2n+1 và 3n+2 là 2 số nguyên tố cùng nhau
cre: h
chứng minh rằng với mọi số tự nhiên n thì 2n+1 và 3n+2 là hai số nguyên tố cùng nhau
Chứng minh rằng với mọi n là số tự nhiên thì :
2n + 5 và 3n + 7 là hai số nguyên tố cùng nhau .
chứng minh rằng với mọi số tự nhiên n thì 2n+5 và 3n+7 là 2 số nguyên tố cùng nhau
Chứng minh rằng mọi số tự nhiên n thì (2n + 3) và (3n + 4) là hai số nguyên tố cùng nhau.
Chứng minh rằng với mọi số tự nhiên n thì:
2n+5 và 3n+7 là hai số nguyên tố cùng nhau
Giúp mình nha mấy bạn!
1.Chứng tỏ rằng hai số lẻ liên tiếp là hai số nguyên tố cùng nhau
2.Chứng minh rằng với mọi số tự nhiên , các số sau là các số nguyên tố cùng nhau.
a) n+1 và n+2 b)2n+2 và 2n+3
c)2n+1 và n+1 d)n+1 và 3n+4
Chứng tỏ rằng với mọi giá trị số tự nhiên n thì 3n+5 và 2n+3 là hai số nguyên tố cùng nhau
Chứng minh rằng với mọi số tự nhiên n, các số sau là hai số nguyên tố cùng nhau (2 số tự nhiên bằng nhau là 2 số có ước chung lớn nhất là 1)
a, n+3 và n+4
b, 2n + 5 và n + 2
c, 2n + 1 và 3n +1
chứng minh rằng với mọi số tự nhiên n thì 3n + 1 và 6n + 3 hai
số nguyên tố cùng nhau