TH

Chứng minh rằng với mọi số nguyên x, đa thức: P(x)= ax^2 +bx +c (a≠0) nhận giá trị nguyên khi 2a, a+b, c là các số nguyên và ngược lại.

TH
22 tháng 4 2022 lúc 21:45

*C/m với x nguyên, 2a, a+b, c là các số nguyên khi đa thức P(x) luôn nhận giá trị nguyên.

\(P\left(0\right)=c\) nguyên.

\(P\left(1\right)=a+b+c\) nguyên mà c nguyên \(\Rightarrow a+b\) nguyên. (1)

\(P\left(2\right)=4a+2b+c\) nguyên mà c nguyên \(\Rightarrow4a+2b\) nguyên. (2)

-Từ (1), (2) suy ra a, b nguyên \(\Rightarrow\)2a nguyên.

\(\Rightarrow\)đpcm.

*C/m với x nguyên, đa thức P(x) luôn nhận giá trị nguyên khi 2a, a+b, c nguyên.

-Từ đây suy ra cả 3 số a,b,c đều nguyên.

\(\Rightarrow\)đpcm.

 

Bình luận (0)
HN
22 tháng 4 2022 lúc 21:46
Bình luận (0)

Các câu hỏi tương tự
OO
Xem chi tiết
DH
Xem chi tiết
HM
Xem chi tiết
TS
Xem chi tiết
JP
Xem chi tiết
VT
Xem chi tiết
HT
Xem chi tiết
H24
Xem chi tiết
VH
Xem chi tiết