TK

Chứng minh rằng với mọi số nguyên n thì n^2+x+9 không chia hết cho 49

AH
27 tháng 1 2022 lúc 11:23

Lời giải:
Giả sử $n^2+n+9\vdots 49$

$\Rightarrow n^2+n+9\vdots 7$

$\Leftrightarrow n^2+n-7n+9\vdots 7$

$\Leftrightarrow (n-3)^2\vdots 7$

$\Leftrightarrow n-3\vdots 7(*)$

$\Leftrightarrow (n-3)^2\vdots 49$

$\Leftrightarrow n^2-6n+9\vdots 49$

$\Leftrightarrow (n^2+n+9)-7n\vdots 49$

$\Leftrightarrow 7n\vdots 49$ (do $n^2+n+9\vdots 49$ theo giả sử)

$\Leftrightarrow n\vdots 7$ (vô lý theo $(*)$)

Vậy điều giả sử là sai. Tức là $n^2+n+9\not\vdots 49$ với mọi $n$ nguyên.

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
H24
Xem chi tiết
TP
Xem chi tiết
TT
Xem chi tiết
BH
Xem chi tiết
NH
Xem chi tiết
H24
Xem chi tiết
FF
Xem chi tiết
NA
Xem chi tiết