Ôn thi vào 10

PO

 Chứng minh rằng với mọi số nguyên dương \(n\) thì \(n^4+4.n^3+7.n^2+6n+3\) luôn luôn không là số lập phương .
P/s:  em in phép nhờ quý thầy cô giáo và các bạn trong nhóm hỗ trợ và giúp đỡ em tham khảo với ạ, em cám ơn nhiều ạ!

NL
5 tháng 4 2022 lúc 17:32

Đặt \(N=n^4+4n^3+7n^2+6n+3=\left(n^2+n+1\right)\left(n^2+3n+3\right)\)

Do \(n\) và \(n+1\) luôn khác tính chẵn lẻ \(\Rightarrow n^2\) và \(n+1\) khác tính chẵn lẻ

\(\Rightarrow n^2+n+1\) luôn lẻ

Gọi \(d=ƯC\left(n^2+n+1;n^2+3n+3\right)\) \(\Rightarrow d\) lẻ

\(\Rightarrow n^2+3n+3-\left(n^2+n+1\right)⋮d\)

\(\Rightarrow2\left(n+1\right)⋮d\)

\(\Rightarrow n+1⋮d\)

\(\Rightarrow\left(n+1\right)^2⋮d\Rightarrow\left(n+1\right)^2-\left(n^2+n+1\right)⋮d\)

\(\Rightarrow n⋮d\Rightarrow n+1-n⋮d\Rightarrow d=1\)

\(\Rightarrow n^2+n+1\) và \(n^2+3n+3\) nguyên tố cùng nhau

Giả sử tồn tại m nguyên dương thỏa mãn: \(\left(n^2+n+1\right)\left(n^2+3n+3\right)=m^3\)

Hiển nhiên \(m>1\), do \(n^2+n+1\) và \(n^2+3n+3\) nguyên tố cùng nhau, đồng thời \(n^2+3n+3>n^2+n+1\)

\(\Rightarrow\left\{{}\begin{matrix}n^2+n+1=1\\n^2+3n+3=m^3\end{matrix}\right.\)

Từ \(n^2+n+1=1\Rightarrow\left[{}\begin{matrix}n=-1\\n=0\end{matrix}\right.\) đều ko thỏa mãn n nguyên dương

Vậy N luôn luôn ko là lập phương

Bình luận (1)

Các câu hỏi tương tự
PO
Xem chi tiết
PO
Xem chi tiết
PO
Xem chi tiết
PO
Xem chi tiết
PO
Xem chi tiết
PO
Xem chi tiết
PO
Xem chi tiết
PO
Xem chi tiết
PO
Xem chi tiết