Chứng minh rằng với mọi số nguyên dương n ta có \(\frac{1}{2}+\frac{1}{3\sqrt{2}}+...+\frac{1}{\left(n+1\right)\sqrt{n}}< 2\)
chứng minh rằng với mọi số nguyên dương n ta có:
\(\frac{1}{2}+\frac{1}{3\sqrt{2}}+...+\frac{1}{\left(n+1\right)\sqrt{n}}< 2\)
Cho số nguyên dương n. Chứng minh rằng với mọi số thực dương x, ta có bất đẳng thức:
\(\frac{x^n\left(x^{x+1}+1\right)}{x^n+1}\le\left(\frac{x+1}{2}\right)^{2n+1}\)
Chứng minh rằng:
a) Với mọi số nguyên dương n ta có \(\frac{1}{2}+\frac{1}{3\sqrt{2}}+...+\frac{1}{\left(n+1\right)\sqrt{n}}< 1\)
Chứng minh với mọi số nguyên dương n, n>=2 ta có :
\(\left(1-\frac{2}{6}\right)\left(1-\frac{2}{12}\right)\left(1-\frac{2}{20}\right)...\left(1-\frac{2}{n\left(n+1\right)}\right)>\frac{1}{3}\)
Chứng minh rằng với mọi số nguyên dương n ta đều có:
\(\frac{1}{2\sqrt{1}}+\frac{1}{3\sqrt{2}}+\frac{1}{4\sqrt{3}}+\frac{1}{5\sqrt{4}}+...+\frac{1}{\left(n+1\right)\sqrt{n}}< 2\)
Chứng minh rằng: Với mọi số nguyên dương n ta có \(\frac{1}{2}\)+\(\frac{1}{3\sqrt{2}}\)+...+\(\frac{1}{\left(n+1\right)\sqrt{n}}\)<2
Chứng minh rằng với mọi số nguyên dương n, p ta có :
\(\dfrac{1}{\left(1+1\right)\sqrt[p]{1}}+\dfrac{1}{\left(2+1\right)\sqrt[p]{2}}+...+\dfrac{1}{\left(n+1\right)\sqrt[p]{n}}\) < p
Chứng minh rằng với mọi số nguyên dương n, p ta có :
\(\dfrac{1}{\left(1+1\right)\sqrt[p]{1}}+\dfrac{1}{\left(2+1\right)\sqrt[p]{2}}+...+\dfrac{1}{\left(n+1\right)\sqrt[p]{n}}\) < p