C1: Có: \(9.3^{4n}=9.81^n\equiv1.1^n\equiv1\left(mod4\right)\)
\(8.2^{4n}=8.4^{2n}\equiv8\left(-1\right)^{2n}\equiv0\left(mod4\right)\)
\(2019\equiv3\left(mod4\right)\)
=> \(M=9.3^{4n}-8.2^{4n}+2019\equiv1-0+3\equiv0\left(mod4\right)\)
=> \(M=9.3^{4n}-8.2^{4n}+2019⋮4\) (1)
Có: \(9.3^{4n}=9.81^n\equiv4.1^n\equiv4\left(mod5\right)\)
\(8.2^{4n}=8.4^{2n}\equiv3.\left(-1\right)^{2n}\equiv3\left(mod5\right)\)
\(2019\equiv-1\left(mod5\right)\)
=> \(M=9.3^{4n}-8.2^{4n}+2019\equiv0\left(mod5\right)\)
=> \(M=9.3^{4n}-8.2^{4n}+2019⋮5\) (2)
Từ (1) và (2) và (4;5)=1 ; 4.5=20
=> \(M=9.3^{4n}-8.2^{4n}+2019\) chia hết cho 20.