Chứng minh rằng với mọi số nguyên dương a, b, c ta luôn có: \(1< \frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< 2\)
chứng minh rằng với mọi số nguyên dương a, b, c ta luôn có:
1<a/a+b + b/b+c+ c/c+a<2
chứng minh rằng S=(a-b).(a-c).(a-d).(b-c).(b-d).(c-d) luôn chia hết cho 6 với mọi số nguyên a; b; c; d
4.CMR với mọi số nguyên dương a,b,c ta luôn có:
\(1<\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}<2\)
1. Tìm số tự nhiên nhỏ hơn 1000 biết khi chia nó cho 3,5,7,11 ta được các số dư lần lượt là 1,2,3,9 .
2. Tìm tất cả các cặp số nguyên dương a, b biết rằng 7a = 11b và ƯCLN(a,b) = 45
3. Chứng minh rằng với a,b,c là các số nguyên khác 0 ta luôn có:
\(BCNN\left(a,b,c\right)=\frac{\text{Ư}CLN\left(a,b,c\right).BCNN\left(a,b\right).\text{Ư}CLN\left(b,c\right).\text{Ư}CLN\left(c,a\right)}{abc}\)
CMR; M=(-a+b) -(b+c-a) +(c-a)
trong đó b,c thuộc Z còn a là 1 số nguyên âm.chứng minh rằng biểu thức M luôn luôn dương.
GIẢI GIÚP MÌNH VỚI NHÉ!!!!!!!^^^
2. tính : D= 2^100-2^99-2^98 - ...- 2^2-2-1
3. Cho M = (-a+b) - (b+c-a) +(c-a) còn a là một số nguyên âm . Chứng minh rằng biểu thức M luôn luôn là số dương .
a) Chứng minh rằng nếu \(gcd\left(a,b\right)=1\) thì \(gcd\left(a^m-b^m,a^n-b^n\right)=a^{gcd\left(m,n\right)}-b^{gcd\left(m,n\right)}\), với mọi m,n nguyên dương.
b) (Định lí cơ bản của Số học) Chứng minh rằng một số nguyên dương luôn có thể phân tích thành các thừa số nguyên tố:
\(n=p_1^{\alpha_1}p_2^{\alpha_2}...p_n^{\alpha_n}\)
1.Cho A = a - b + c + 1 và B = a+2 với a,b,c thuộc Z.Biết A=B,Chứng Minh b và c là 2 số liền nhau
2.Cho M = (-a + b )- ( b+ c - a ) + (c - a ) . Trong đó b,c thuộc Z . a là số nguyên âm . Chứng Minh biểu thức M luôn dương
LƯU Ý : nhớ viết cách giải và kết quả chứ ko ghi mỗi đáp án