Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

VL

chứng minh rằng với mọi n thuộc n* thì 6n + 7 và 8n + 9 là 2 số nguyên tố cùng nhau

XO
25 tháng 12 2020 lúc 22:11

Gọi ƯCLN(6n + 7 ; 8n + 9) = d

=> \(\hept{\begin{cases}6n+7⋮d\\8n+9⋮d\end{cases}}\Rightarrow\hept{\begin{cases}4\left(6n+7\right)⋮d\\3\left(8n+9\right)⋮d\end{cases}}\Rightarrow\hept{\begin{cases}24n+28⋮d\\24n+27⋮d\end{cases}}\)

=> \(\left(24n+28\right)-\left(24n+27\right)⋮d\)

=> \(1⋮d\)

=> d = 1

=> 6n + 7 và 8n + 9 là 2 số nguyên tố cùng nhau

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
NL
Xem chi tiết
MD
Xem chi tiết
JE
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
PC
Xem chi tiết
KN
Xem chi tiết
HC
Xem chi tiết
BQ
Xem chi tiết