Đặt \(A=\frac{3}{9.14}+\frac{3}{14.19}+.......+\frac{3}{\left(5n-1\right)\left(5n+4\right)}\)
\(5A=\frac{15}{9.14}+\frac{15}{14.19}+.....+\frac{15}{\left(5n-1\right)\left(5n+4\right)}\)
\(5A=3.\left(\frac{5}{9.14}+\frac{5}{14.19}+......+\frac{5}{\left(5n-1\right)\left(5n+4\right)}\right)\)
\(5A=3.\left(\frac{1}{9}-\frac{1}{14}+\frac{1}{14}-\frac{1}{19}+.....+\frac{1}{5n-1}-\frac{1}{5n+4}\right)\)
\(5A=3.\left(\frac{1}{9}-\frac{1}{5n+4}\right)\)
\(5A=\frac{1}{3}-\frac{1}{5n+4}\)
=> \(5A<\frac{1}{3}\)
=> \(A<\frac{1}{3}:5\)
hay \(A<\frac{1}{15}\) \(\left(đpcm\right)\)
Nhớ nhé bạn