Gọi ƯCLN(n+3;n+2) là d
ta có: n+3 chia hết cho d
n+2 chia hết cho d
=> n + 3 - n - 2 chia hết cho d
=> 1 chia hết cho d
=> ƯCLN(n+3;n+2) = 1
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Gọi ƯCLN(n+3;n+2) là d
ta có: n+3 chia hết cho d
n+2 chia hết cho d
=> n + 3 - n - 2 chia hết cho d
=> 1 chia hết cho d
=> ƯCLN(n+3;n+2) = 1
1. Chứng minh rằng với mọi số tự nhiên n thì ƯCLN(21 4;14 3) 1 n n
2. Chứng minh rằng: Nếu p là số nguyên tố lớn hơn 3 và 2 1 p cũng là số nguyên tố thì 4 1 p
là hợp số?
Chứng minh rằng với mọi số TN n thì ƯCLN (21n +4;14n+3)=1
(f) Chứng minh rằng với mọi số tự nhiên n > 1 thì: 5^n+2 + 26.5^n + 82n+1 chia hết cho 59.
(g) Chứng minh rằng với mọi số tự nhiên n > 1 thì số 4^2n+1 + 3^n+2chia hết cho 13.
(h) Chứng minh rằng với mọi số tự nhiên n > 1 thì số 5^2n+1 + 2^n+4+ 2^n+1 chia hết cho 23.
(i) Chứng minh rằng với mọi số tự nhiên n > 1 thì số 11n+2 + 122n+1 chia hết cho 133.
(j) Chứng minh rằng với mọi số tự nhiên n > 1: 5^2n−1 .26n+1 + 3^n+1 .2^2n−1 chia hết cho 38
1. Tìm ƯCLN của 2n+3 và 4n+3 với n€N
2. Chứng minh rằng với mọi số tự nhiên n thì 7n+10 và 5n+7 là hai số nguyên tố cùng nhau
chứng minh rằng ƯCLN(12n+1,30n +1)=1 với mọi n thuộc N
Chứng minh rằng: 1/n+1 + 1/n+3 +......+ 1/n+n > 1/2 ( với mọi n e N*)
chứng minh rằng
a)ƯCLN(4n+1,5n+1)=1 ; b)ƯCLN(2n+1,2n+3)=1
c)n.(n+5) chia hết cho 2 với mọi n thuộc N ; (n+3).(n+7).(n+8) chia hết cho 3 với mọi n thuộc N
chứng minh rằng với mọi số tự nhiên n thi ƯCLN (21n+4;14n+3)=1
Bài 5: Chứng minh rằng với mọi số tự nhiên n thì n(n+1)⋮2
mn bày e gấp