Chứng minh rằng với mọi số tự nhiên n lớn hơn hoặc bằng 2 thì tổng:
\(S=\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+...+\frac{n^2-1}{n^2}\)không thể là một số nguyên
Bài 1 :Chứng tỏ rằng
D=\(\frac{2!}{3!}+\frac{2!}{4!}+\frac{2!}{5!}+...+\frac{2!}{n!}< 1\)
Bài 2 :Chứng minh rằng \(\forall n\in Z\left(n\ne0,n\ne1\right)\)thì \(Q=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{n\left(n+1\right)}\)không phải số nguyên
CMR: \(S=\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+....+\frac{n^2-1}{n^2}\) không là số tự nhiên với mọi \(n\in N,n>2\)
Chứng tỏ rằng với mọi số tự nhiên \(\ge\) thì tổng:
S=\(\frac{3}{4}\)+\(\frac{8}{9}\)+\(\frac{15}{16}\)+...+\(\frac{n^2-1}{n^2}\) không thể là 1 số nguyên
CÁC BẠN LÀM GIÚP MÌNH VỚI
Chứng tỏ rang tổng sau :
\(\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+...+\frac{n^2-1}{n^2}\)không phải là sô tự nhiên với n thuộc N* và n > 2
chứng minh rằng với mọi số tự nhiên nhỏ hơn hoặc bằng 2 thì tổng sau không có giá trị là số nguyên
\(S=\frac{3}{2^2}+\frac{8}{3^2}+\frac{15}{4^2}+.....+\frac{n^2-1}{n^2}\)
CMR: S = \(\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+...+\frac{n^2-1}{n^2}\)
Không là số tự nhiên với mọi n thuộc N n> hoặc = 2
a) Cho \(C=\) \(\frac{1}{11}\)+\(\frac{1}{12}\)+\(\frac{1}{13}\)+. . .+\(\frac{1}{19}\)
Chứng minh rằng C không phải là số nguyên
b) Cho \(D=2\cdot\)\([\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+...+\frac{1}{n\left(n+2\right)}]\)\(với\)\(n\inℕ^∗\)
Chứng minh rằng D không phải là số nguyên
c) Cho \(E=\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{2}{7}+\frac{2}{9}+\frac{2}{11}\)
Chứng minh rằng E không phải là số nguyên
\(\text{Chứng minh rằng : }\)\(\forall n\in Z\left(n\ne0,n\ne-1\right)\)\(\text{thì }\)\(Q=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{n\left(n+1\right)}\)
\(\text{Không phải là số nguyên}\)